• Dileep George and Jeff Hawkins. Invariant Pattern Recognition using Bayesian Inference on Hierarchical Sequences. In Proceedings of the Neural Information Processing Systems Conference (NIPS), 2004. (doi:10.1.1.84.6994)
  • Dileep George and Jeff Hawkins. A hierarchical Bayesian model of invariant pattern recognition in the visual cortex. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 1812–1817, 2005. (doi:10.1109/IJCNN.2005.1556155)
  • Jeff Hawkins. Response to reviews by Feldman, Perlis, Taylor. Artificial Intelligence, 169(2):196–200, 2005. (doi:10.1016/j.artint.2005.10.014)
  • Jeff Hawkins and Dileep George. Hierarchical temporal memory: Theory and applications, 2006. (doi:10.1109/IEMBS.2006.260909)
  • Bruce Bobier. Handwritten Digit Recognition using Hierarchical Temporal Memory. 2007.
  • Adam B. Csapo, Peter Baranyi, and Domonkos Tikk. Object categorization using VFA-generated nodemaps and hierarchical temporal memories. In Proceedings of the 5th IEEE International Conference on Computational Cybernetics, pages 257–262, 2007. (doi:10.1109/ICCCYB.2007.4402045)
  • Jefferson Hawkins. Learn like a human: Why can't a computer be more like a brain? IEEE Spectrum, 44(4):21–26, 2007. (doi:10.1109/MSPEC.2007.339647)
  • Numenta Inc. Numenta Node Algorithms Guide –- NuPIC 1.7. pages 1–8, 2007.
  • Numenta Inc. Problems that Fit HTM. 2007.
  • Jeff Hawkins. Why can't a computer be more like a brain? Or what to do with all those transistors? Digest of Technical Papers - IEEE International Solid-State Circuits Conference, pages 38–41, 2008. (doi:10.1109/ISSCC.2008.4523046)
  • Numenta. Numenta Platform for Intelligent Computing Node Plugin Developer s Guide. 2008.
  • Inc. Numenta. Getting Started With NuPIC. 2008.
  • Numenta Inc. Advanced NuPIC Programming, 2008.
  • Kwang Ho Seok and Yoon Sang Kim. A new robot motion authoring method using HTM. In Proceedings of the International Conference on Control, Automation and Systems, ICCAS, pages 2058–2061, 2008. (doi:10.1109/ICCAS.2008.4694474)
  • John Thornton, Jolon Faichney, Michael Blumenstein, and Trevor Hine. Character Recognition Using Hierarchical Vector Quantization and Temporal Pooling. In Proceedings of the 21st Australasian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, volume 5360, pages 562–572, 2008. (doi:10.1007/978-3-540-89378-3_57)
  • Joost Van Doremalen and Lou Boves. Spoken digit recognition using a hierarchical temporal memory. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pages 2566–2569, 2008.
  • Subutai Ahmad and Jeff Hawkins. Properties of Sparse Distributed Representations and their Application to Hierarchical Temporal Memory. arXiv preprint arXiv:1503.07469, 2009. (doi:10.1063/1.4918346)
  • D. George. How to make computers that work like the brain. In 2009 46th ACM/IEEE Design Automation Conference, pages 420–423, 2009. (doi:10.1145/1629911.1630024)
  • Dileep George and Jeff Hawkins. Towards a mathematical theory of cortical micro-circuits. PLoS Computational Biology, 5(10), 2009. (doi:10.1371/journal.pcbi.1000532)
  • Jeff Hawkins, Dileep George, and Jamie Niemasik. Sequence memory for prediction, inference and behaviour. Philosophical transactions of the Royal Society of London, 364:1203–1209, 2009. (doi:10.1098/rstb.2008.0322)
  • Wim J C Melis and Michitaka Kameyama. A study of the different uses of colour channels for traffic sign recognition on hierarchical temporal memory. In Proceedings of the 4th International Conference on Innovative Computing, Information and Control (ICICIC), pages 111–114, 2009. (doi:10.1109/ICICIC.2009.55)
  • Wim J. C. Melis, Shuhei Chizuwa, and Michitaka Kameyama. Evaluation of hierarchical temporal memory for a real world application. Proceedings of the 4th International Conference on Innovative Computing, Information and Control (ICICIC), pages 144–147, 2009. (doi:10.1109/ICICIC.2009.195)
  • Bedeho Mesghina and Wolde Mender. On The Equivalence of Hierarchical Temporal Memory and Neural Nets. 2009.
  • Numenta Inc. Numenta Vision Toolkit Tutorial. 2009.
  • Numenta Inc. The Science of Anomaly Detection: How HTM Enables Anomaly Detection in Streaming Data. White Paper, 2009. (doi:10.1145/1541880.1541882)
  • Jason Sherwin and Dimitri Mavris. Hierarchical temporal memory algorithms for understanding asymmetric warfare. In IEEE Aerospace Conference Proceedings, 2009. (doi:10.1109/AERO.2009.4839644)
  • Lei Wang, Xianbin Wen, Xu Jiao, and Jianguang Zhang. Object Recognition Using a Bayesian Network Imitating Human Neocortex. In Proceedings of the 2nd International Congress on Image and Signal Processing, 2009. (doi:10.1109/CISP.2009.5302350)
  • Sen Zhang, Marcelo H. Ang, Wendong Xiao, and Chen Khong Tham. Detection of activities by wireless sensors for daily life surveillance: Eating and drinking. Sensors, 9:1499–1517, 2009. (doi:10.3390/s90301499)
  • Frank Jacobus, Jay McCormack, and Josh Hartung. The Chair Back Experiment: Hierarchical Temporal Memory and the Evolution of Artificial Intelligence in Architecture. International Journal of Architectural Computing, 8(2):151–164, 2010. (doi:10.1260/1478-0771.8.2.151)
  • Tomasz Kapuscinski. Hand Shape Recognition in Real Images Using Hierarchical Temporal Memory Trained on Synthetic Data. Image Processing and Communications Challenges, pages 193–200, 2010.
  • Ricardo J. Rodriguez and James A. Cannady. Automated risk assessment: A hierarchical temporal memory approach. In Proceedings of the 9th WSEAS international conference on Data networks, communications, computer, pages 53–57, 2010.
  • Svorad Stolc and Ivan Bajla. Application of the computational intelligence network based on hierarchical temporal memory to face recognition. In Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Applications (AIA), pages 185–192, 2010.
  • Svorad Stolc and Ivan Bajla. On the Optimum Architecture of the Biologically Inspired Hierarchical Temporal Memory Model Applied to the Hand-Written Digit Recognition. Measurement Science Review, 10(2):28–49, 2010. (doi:10.2478/v10048-010-0008-4)
  • John M. Casarella. The Application of Hierarchical Temporal Memory to the Evaluation of EEG Signals. In Proceedings of the Student/Faculty Research Day, 2011.
  • Numenta Inc. Hierarchical Temporal Memory including HTM Cortical Learning Algorithms. Numenta Whitepaper, 2011.
  • David Rozado, Francisco B. Rodriguez, and Pablo Varona. Gaze gesture recognition with hierarchical temporal memory networks. In International Work-Conference on Artificial Neural Networks, volume 6691 LNCS, pages 1–8, 2011. (doi:10.1007/978-3-642-21501-8_1)
  • S. Sinkevicius, R. Simutis, and V. Raudonis. Monitoring of humans traffic using Hierarchical Temporal Memory algorithms. Electronics and Electrical Engineering, 9(115):91–96, 2011. (doi:10.5755/j01.eee.115.9.757)
  • Tomasz Kapuscinski. Vision-Based Recognition of Fingerspelled Acronyms Using Hierarchical Temporal Memory. pages 527–534, 2012.
  • Ioannis Kostavelis, Lazaros Nalpantidis, and Antonios Gasteratos. Object recognition using saliency maps and HTM learning. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques, pages 528–532, 2012. (doi:10.1109/IST.2012.6295575)
  • A. J. Perea, J. E. Meroño, and M. J. Aguilera. Hierarchical temporal memory for mapping vineyards using digital aerial photographs. African Journal of Agricultural Reseearch, 7(3):456–466, 2012. (doi:10.5897/AJAR11.1229)
  • Jianguo Xing, Tao Wang, Yang Leng, and Jun Fu. A bio-inspired olfactory model using hierarchical temporal memory. In Proceedings of the 5th International Conference on Biomedical Engineering and Informatics (BMEI), number Bmei, pages 923–927, 2012. (doi:10.1109/BMEI.2012.6513154)
  • Xinzheng Zhang, Jianfen Zhang, Ahmad B. Rad, Xiaochun Mai, and Yichen Jin. A novel mapping strategy based on neocortex model: Pre-liminary results by hierarchical temporal memory. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics, pages 476–481, 2012. (doi:10.1109/ROBIO.2012.6491012)
  • Xia Zhituo, Ruan Hao, and Wang Hao. A content-based image retrieval system using multiple hierarchical temporal memory classifiers. In Proceedings of the 5th International Symposium on Computational Intelligence and Design (ISCID), pages 438–441, 2012. (doi:10.1109/ISCID.2012.253)
  • Wen Zhuo, Zhiguo Cao, Yueming Qin, Zhenghong Yu, and Yang Xiao. Image classification using HTM cortical learning algorithms. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR), pages 2452–2455, 2012.
  • Anju Dalal, Yusuf Ozturk, and Kee S. Moon. Finger Motion EMG Signal Classification Based on HTM (Hierarchical Temporal Memory) Technique. In Proceedings of the 6th International IEEE EMBS Conference on Neural Engineering, 2013. (doi:10.1109/IEMBS.2006.260909)
  • Patrick Gabrielsson, Rikard König, and Ulf Johansson. Evolving hierarchical temporal memory-based trading models. In Proceedings of the European Conference on the Applications of Evolutionary Computation, pages 213–222, 2013. (doi:10.1007/978-3-642-37192-9-22)
  • Yea Shuan Huang and Yun Jiun Wang. A hierarchical temporal memory based hand posture recognition method. IAENG International Journal of Computer Science, 40(2):87–93, 2013.
  • Xiaochun Mai, Xinzheng Zhang, Yichen Jin, Yi Yang, and Jianfen Zhang. Simple Perception-Action Strategy Based on Hierarchical Temporal Memory. In Proceeding of the IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 1759–1764, 2013.
  • Daniel E. Padilla, Russell Brinkworth, and Mark D. McDonnell. Performance of a hierarchical temporal memory network in noisy sequence learning. In Proceeding of the EEE International Conference on Computational Intelligence and Cybernetics, pages 45–51, 2013. (doi:10.1109/CyberneticsCom.2013.6865779)
  • Yu A. Bolotova, A. A. Druki, and V. G. Spitsyn. License plate recognition with hierarchical temporal memory model. In 9th International Forum on Strategic Technology (IFOST), pages 136–139, 2014. (doi:10.1109/IFOST.2014.6991089)
  • Michael R. Ferrier. Toward a Universal Cortical Algorithm: Examining Hierarchical Temporal Memory in Light of Frontal Cortical Function. arXiv preprint arXiv:1411.4702, 2014.
  • Ritchie Lee and Mariam Rajabi. Assessing NuPIC and CLA in a Machine Learning Context using NASA Aviation Datasets. pages 1–15, 2014.
  • Numenta Inc. Rogue Behavior Detection: Identifying Behavioral Anomalies in Human Generated Data. 2014.
  • Fergal Byrne. Symphony from Synapses: Neocortex as a Universal Dynamical Systems Modeller using Hierarchical Temporal Memory. arXiv preprint arXiv:1512.05245, pages 1–25, 2015.
  • Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. Continuous online sequence learning with an unsupervised neural network model. arXiv preprint arXiv:1512.05463, 2015.
  • Alexander Lavin and Subutai Ahmad. Evaluating Real-time Anomaly Detection Algorithms – the Numenta Anomaly Benchmark. In Proceedings of the14th International Conference on Machine Learning and Applications (ICMLA), 2015. (doi:10.1109/ICMLA.2015.141)
  • Inc. Numenta. The Path to Machine Intelligence. White Paper, 2015.
  • Hanwen Xu, Koki Kanazawa, Daiki Matsumoto, and Junichi Takeno. The Thermal Grill Illusion: A Study Using a Consciousness System. Procedia Computer Science, 71:38–43, 2015. (doi:10.1016/j.procs.2015.12.188)
  • Subutai Ahmad and Jeff Hawkins. How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites. arXiv preprint arXiv:1601.00720, 2016.
  • Jeff Hawkins. Hierarchical temporal memory, 2016. (doi:10.1109/IEMBS.2006.260909)
  • Jeff Hawkins and Subutai Ahmad. Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex. Frontiers in Neural Circuits, 10, 2016. (doi:10.3389/fncir.2016.00023)
  • A. Lavin, S. Ahmad, and J. Hawkins. Sparse Distributed Representations. 2016.
  • S. Purdy. Encoding Data for HTM Systems. 2016.
  • Scott Purdy. Encoding Data for HTM Systems. 2016.