- Dileep George and Jeff
Hawkins.
Invariant
Pattern Recognition using Bayesian Inference on Hierarchical Sequences.
In Proceedings of the Neural Information Processing Systems Conference
(NIPS), 2004.
(doi:10.1.1.84.6994)
- Dileep George and Jeff
Hawkins.
A hierarchical Bayesian model of invariant pattern recognition in the visual
cortex.
In Proceedings of the International Joint Conference on Neural
Networks, volume 3, pages 1812–1817, 2005.
(doi:10.1109/IJCNN.2005.1556155)
- Jeff
Hawkins.
Response
to reviews by Feldman, Perlis, Taylor.
Artificial Intelligence, 169(2):196–200, 2005.
(doi:10.1016/j.artint.2005.10.014)
- Jeff Hawkins and Dileep
George.
Hierarchical
temporal memory: Theory and applications, 2006.
(doi:10.1109/IEMBS.2006.260909)
- Bruce
Bobier.
Handwritten Digit Recognition using Hierarchical Temporal Memory.
2007.
- Adam B.
Csapo, Peter Baranyi, and Domonkos Tikk.
Object categorization using VFA-generated nodemaps and hierarchical temporal
memories.
In Proceedings of the 5th IEEE International Conference on Computational
Cybernetics, pages 257–262, 2007.
(doi:10.1109/ICCCYB.2007.4402045)
- Jefferson
Hawkins.
Learn like a human: Why can't a computer be more like a brain?
IEEE Spectrum, 44(4):21–26, 2007.
(doi:10.1109/MSPEC.2007.339647)
- Numenta Inc.
Numenta Node Algorithms Guide –- NuPIC 1.7.
pages 1–8, 2007.
- Numenta Inc.
Problems that Fit HTM.
2007.
- Jeff
Hawkins.
Why can't a computer be more like a brain? Or what to do with all those
transistors?
Digest of Technical Papers - IEEE International Solid-State Circuits
Conference, pages 38–41, 2008.
(doi:10.1109/ISSCC.2008.4523046)
- Numenta.
Numenta Platform for Intelligent Computing Node Plugin Developer s Guide.
2008.
- Inc.
Numenta.
Getting Started With NuPIC.
2008.
- Numenta Inc.
Advanced NuPIC Programming, 2008.
- Kwang Ho
Seok and Yoon Sang Kim.
A new robot motion authoring method using HTM.
In Proceedings of the International Conference on Control, Automation and
Systems, ICCAS, pages 2058–2061, 2008.
(doi:10.1109/ICCAS.2008.4694474)
- John Thornton, Jolon
Faichney, Michael Blumenstein, and Trevor
Hine.
Character
Recognition Using Hierarchical Vector Quantization and Temporal Pooling.
In Proceedings of the 21st Australasian Joint Conference on Artificial
Intelligence: Advances in Artificial Intelligence, volume 5360, pages
562–572, 2008.
(doi:10.1007/978-3-540-89378-3_57)
- Joost Van Doremalen and Lou
Boves.
Spoken digit recognition using a hierarchical temporal memory.
In Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, pages 2566–2569, 2008.
- Subutai Ahmad and Jeff
Hawkins.
Properties of Sparse Distributed
Representations and their Application to Hierarchical Temporal Memory.
arXiv preprint arXiv:1503.07469, 2009.
(doi:10.1063/1.4918346)
- D. George.
How to make computers that work like the brain.
In 2009 46th ACM/IEEE Design Automation Conference, pages
420–423, 2009.
(doi:10.1145/1629911.1630024)
- Dileep George and Jeff
Hawkins.
Towards a mathematical theory of cortical micro-circuits.
PLoS Computational Biology, 5(10), 2009.
(doi:10.1371/journal.pcbi.1000532)
- Jeff
Hawkins, Dileep George, and Jamie Niemasik.
Sequence
memory for prediction, inference and behaviour.
Philosophical transactions of the Royal Society of London,
364:1203–1209, 2009.
(doi:10.1098/rstb.2008.0322)
- Wim J C Melis and Michitaka
Kameyama.
A study of the different uses of colour channels for traffic sign recognition
on hierarchical temporal memory.
In Proceedings of the 4th International Conference on Innovative
Computing, Information and Control (ICICIC), pages 111–114, 2009.
(doi:10.1109/ICICIC.2009.55)
- Wim
J. C. Melis, Shuhei Chizuwa, and Michitaka
Kameyama.
Evaluation of hierarchical temporal memory for a real world application.
Proceedings of the 4th International Conference on Innovative Computing,
Information and Control (ICICIC), pages 144–147, 2009.
(doi:10.1109/ICICIC.2009.195)
- Bedeho Mesghina and Wolde
Mender.
On The Equivalence of Hierarchical Temporal Memory and Neural Nets.
2009.
- Numenta Inc.
Numenta Vision Toolkit Tutorial.
2009.
- Numenta Inc.
The Science
of Anomaly Detection: How HTM Enables Anomaly Detection in Streaming
Data.
White Paper, 2009.
(doi:10.1145/1541880.1541882)
- Jason Sherwin and Dimitri
Mavris.
Hierarchical temporal memory algorithms for understanding asymmetric warfare.
In IEEE Aerospace Conference Proceedings, 2009.
(doi:10.1109/AERO.2009.4839644)
- Lei
Wang, Xianbin Wen, Xu Jiao, and
Jianguang Zhang.
Object
Recognition Using a Bayesian Network Imitating Human Neocortex.
In Proceedings of the 2nd International Congress on Image and Signal
Processing, 2009.
(doi:10.1109/CISP.2009.5302350)
- Sen
Zhang, Marcelo H. Ang, Wendong Xiao, and
Chen Khong Tham.
Detection of activities by wireless sensors for daily life surveillance:
Eating and drinking.
Sensors, 9:1499–1517, 2009.
(doi:10.3390/s90301499)
- Frank Jacobus, Jay McCormack,
and Josh Hartung.
The
Chair Back Experiment: Hierarchical Temporal Memory and the Evolution of
Artificial Intelligence in Architecture.
International Journal of Architectural Computing, 8(2):151–164,
2010.
(doi:10.1260/1478-0771.8.2.151)
- Tomasz Kapuscinski.
Hand Shape Recognition in Real Images Using Hierarchical Temporal Memory
Trained on Synthetic Data.
Image Processing and Communications Challenges, pages 193–200,
2010.
- Ricardo J. Rodriguez and
James A. Cannady.
Automated
risk assessment: A hierarchical temporal memory approach.
In Proceedings of the 9th WSEAS international conference on Data
networks, communications, computer, pages 53–57, 2010.
- Svorad Stolc and Ivan Bajla.
Application of the computational intelligence network based on hierarchical
temporal memory to face recognition.
In Proceedings of the 10th IASTED International Conference on Artificial
Intelligence and Applications (AIA), pages 185–192, 2010.
- Svorad Stolc and Ivan Bajla.
On
the Optimum Architecture of the Biologically Inspired Hierarchical Temporal
Memory Model Applied to the Hand-Written Digit Recognition.
Measurement Science Review, 10(2):28–49, 2010.
(doi:10.2478/v10048-010-0008-4)
- John M.
Casarella.
The Application of
Hierarchical Temporal Memory to the Evaluation of EEG Signals.
In Proceedings of the Student/Faculty Research Day, 2011.
- Numenta Inc.
Hierarchical
Temporal Memory including HTM Cortical Learning Algorithms.
Numenta Whitepaper, 2011.
- David
Rozado, Francisco B. Rodriguez, and Pablo
Varona.
Gaze gesture recognition with hierarchical temporal memory networks.
In International Work-Conference on Artificial Neural Networks,
volume 6691 LNCS, pages 1–8, 2011.
(doi:10.1007/978-3-642-21501-8_1)
- S. Sinkevicius, R. Simutis,
and V. Raudonis.
Monitoring of humans traffic using Hierarchical Temporal Memory algorithms.
Electronics and Electrical Engineering, 9(115):91–96, 2011.
(doi:10.5755/j01.eee.115.9.757)
- Tomasz Kapuscinski.
Vision-Based Recognition of Fingerspelled Acronyms Using Hierarchical Temporal
Memory.
pages 527–534, 2012.
- Ioannis Kostavelis, Lazaros
Nalpantidis, and Antonios Gasteratos.
Object recognition using saliency maps and HTM learning.
In Proceedings of the IEEE International Conference on Imaging Systems
and Techniques, pages 528–532, 2012.
(doi:10.1109/IST.2012.6295575)
- A. J.
Perea, J. E. Meroño, and M. J. Aguilera.
Hierarchical temporal memory for mapping vineyards
using digital aerial photographs.
African Journal of Agricultural Reseearch, 7(3):456–466, 2012.
(doi:10.5897/AJAR11.1229)
- Jianguo
Xing, Tao Wang, Yang Leng, and
Jun Fu.
A bio-inspired olfactory model using hierarchical temporal memory.
In Proceedings of the 5th International Conference on Biomedical
Engineering and Informatics (BMEI), number Bmei, pages 923–927, 2012.
(doi:10.1109/BMEI.2012.6513154)
- Xinzheng
Zhang, Jianfen Zhang, Ahmad B. Rad,
Xiaochun Mai, and Yichen Jin.
A novel mapping strategy based on neocortex model: Pre-liminary results by
hierarchical temporal memory.
In Proceedings of the 2012 IEEE International Conference on Robotics and
Biomimetics, pages 476–481, 2012.
(doi:10.1109/ROBIO.2012.6491012)
- Xia
Zhituo, Ruan Hao, and Wang Hao.
A content-based image retrieval system using multiple hierarchical temporal
memory classifiers.
In Proceedings of the 5th International Symposium on Computational
Intelligence and Design (ISCID), pages 438–441, 2012.
(doi:10.1109/ISCID.2012.253)
- Wen Zhuo,
Zhiguo Cao, Yueming Qin,
Zhenghong Yu, and Yang Xiao.
Image
classification using HTM cortical learning algorithms.
In Proceedings of the 21st International Conference on Pattern
Recognition (ICPR), pages 2452–2455, 2012.
- Anju
Dalal, Yusuf Ozturk, and Kee S. Moon.
Finger
Motion EMG Signal Classification Based on HTM (Hierarchical Temporal Memory)
Technique.
In Proceedings of the 6th International IEEE EMBS Conference on Neural
Engineering, 2013.
(doi:10.1109/IEMBS.2006.260909)
- Patrick Gabrielsson, Rikard
König, and Ulf Johansson.
Evolving hierarchical temporal memory-based trading models.
In Proceedings of the European Conference on the Applications of
Evolutionary Computation, pages 213–222, 2013.
(doi:10.1007/978-3-642-37192-9-22)
- Yea Shuan Huang and Yun Jiun
Wang.
A hierarchical temporal memory based hand posture recognition method.
IAENG International Journal of Computer Science, 40(2):87–93,
2013.
- Xiaochun
Mai, Xinzheng Zhang, Yichen Jin,
Yi Yang, and Jianfen Zhang.
Simple Perception-Action Strategy Based on Hierarchical Temporal Memory.
In Proceeding of the IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 1759–1764, 2013.
- Daniel E. Padilla, Russell
Brinkworth, and Mark D. McDonnell.
Performance of a hierarchical temporal memory network in noisy sequence
learning.
In Proceeding of the EEE International Conference on Computational
Intelligence and Cybernetics, pages 45–51, 2013.
(doi:10.1109/CyberneticsCom.2013.6865779)
- Yu A. Bolotova, A. A. Druki,
and V. G. Spitsyn.
License plate recognition with hierarchical temporal memory model.
In 9th International Forum on Strategic Technology (IFOST), pages
136–139, 2014.
(doi:10.1109/IFOST.2014.6991089)
- Michael R.
Ferrier.
Toward a Universal Cortical
Algorithm: Examining Hierarchical Temporal Memory in Light of Frontal
Cortical Function.
arXiv preprint arXiv:1411.4702, 2014.
- Ritchie
Lee and Mariam Rajabi.
Assessing NuPIC and CLA in a Machine Learning Context using NASA Aviation
Datasets.
pages 1–15, 2014.
- Numenta Inc.
Rogue Behavior Detection: Identifying Behavioral Anomalies in Human Generated
Data.
2014.
- Fergal Byrne.
Symphony from Synapses: Neocortex as
a Universal Dynamical Systems Modeller using Hierarchical Temporal
Memory.
arXiv preprint arXiv:1512.05245, pages 1–25, 2015.
- Yuwei Cui,
Subutai Ahmad, and Jeff Hawkins.
Continuous
online sequence learning with an unsupervised neural network model.
arXiv preprint arXiv:1512.05463, 2015.
- Alexander Lavin and Subutai
Ahmad.
Evaluating Real-time Anomaly
Detection Algorithms – the Numenta Anomaly Benchmark.
In Proceedings of the14th International Conference on Machine Learning
and Applications (ICMLA), 2015.
(doi:10.1109/ICMLA.2015.141)
- Inc.
Numenta.
The Path to Machine Intelligence.
White Paper, 2015.
- Hanwen Xu,
Koki Kanazawa, Daiki Matsumoto, and
Junichi Takeno.
The
Thermal Grill Illusion: A Study Using a Consciousness System.
Procedia Computer Science, 71:38–43, 2015.
(doi:10.1016/j.procs.2015.12.188)
- Subutai Ahmad and Jeff
Hawkins.
How do neurons operate on sparse
distributed representations? A mathematical theory of sparsity, neurons and
active dendrites.
arXiv preprint arXiv:1601.00720, 2016.
- Jeff
Hawkins.
Hierarchical
temporal memory, 2016.
(doi:10.1109/IEMBS.2006.260909)
- Jeff Hawkins and Subutai
Ahmad.
Why
Neurons Have Thousands of Synapses, a Theory of Sequence Memory in
Neocortex.
Frontiers in Neural Circuits, 10, 2016.
(doi:10.3389/fncir.2016.00023)
- A. Lavin, S. Ahmad, and
J. Hawkins.
Sparse Distributed Representations.
2016.
- S. Purdy.
Encoding Data for HTM Systems.
2016.
- Scott Purdy.
Encoding Data for HTM Systems.
2016.