- Bernard J.
Baars.
Some
Essential Differences between Consciousness and Attention, Perception, and
Working Memory.
Consciousness and Cognition, 6(2-3):363–371, 1997.
(doi:10.1006/ccog.1997.0307)
- Stan Franklin, Arpad Kelemen,
and Lee Mccauley.
IDA: A Cognitive Agent Architecture.
In Proceedings of the IEEE International Conference Systems, Man, and
Cybernetics, volume 3, 1998.
- S Franklin and A Graesser.
A
software agent model of consciousness.
Consciousness and cognition, 8(3):285–301, 1999.
(doi:10.1006/ccog.1999.0391)
- Myles
Bogner, Uma Ramamurthy, and Stan Franklin.
Consciousness" and Conceptual Learning in a Socially Situated Agent.
Human Cognition and Social Agent Technology, 19:113–135,
2000.
- S. Franklin.
Building life-like'conscious' software agents.
AI Communications, 13(3):183–193, 2000.
- S. Franklin.
Modeling Consciousness and Cognition in Software
Agents.
In Proceedings of the Third International Conference on Cognitive
Modeling, pages 27–58, 2000.
- Stan
Franklin.
Deliberation and voluntary action in ‘conscious'
software agents.
Neural Network World, 10:505–521, 2000.
- Stan
Franklin.
Learning in “Conscious” Software Agents.
In Workshop on Development and Learning, 2000.
- Lee McCauley, Stan Franklin,
and Myles Bogner.
An Emotion-Based
“Conscious” Software Agent Architecture.
In Affective Interactions, pages 107–120. 2000.
(doi:10.1007/10720296_8)
- S. Franklin.
Automating human information agents.
In Z. Chen and L. C. Jain, editors,
Practical Applications of Intelligent Agents, pages 27–58.
Springer-Verlag, Berlin, 2001.
- Stan
Franklin.
An Agent Architecture Potentially Capable of Robust Autonomy.
AAAI Spring Symposium on Robust Autonomy, 2001.
- Stan Franklin and Art
Graesser.
Modeling Cognition with Software Agents.
In Proceedings of the 23rd Annual Conference of the Cognitive Science
Society, pages 301–306, 2001.
- R. Kondadadi and Stan
Franklin.
Deliberative Decision Making in “Conscious” Software Agents.
In Proceedings Of Sixth International Symposium on Artificial Life and
Robotics, 2001.
- Uma Ramamurthy, Aregahegn
Negatu, and Stan Franklin.
Learning Mechanisms for Intelligent Systems.
In Proceedings of SSGRR-2001: International Conference on Advances in
Infrastructure for e-Business, e-Education and e-Science on the
Internet, 2001.
- Lee McCauley and Stan
Franklin.
A large-scale
multi-agent system for navy personnel distribution.
Connection Science, 14(4):371–385, 2002.
(doi:10.1080/0954009021000068934)
- Aregahegn Negatu and Stan
Franklin.
An
action selection mechanism for'conscious' software agents.
Cognitive Science Quarterly, 2:363–386, 2002.
- Ashraf Anwar and Stan
Franklin.
Sparse distributed memory for 'conscious' software agents.
Cognitive Systems Research, 4:339–354, 2003.
(doi:10.1016/S1389-0417(03)00015-9)
- Bernard J. Baars and Stan
Franklin.
How conscious experience and working memory interact.
Trends in Cognitive Sciences, 7(4):166–172, 2003.
(doi:10.1016/S1364-6613(03)00056-1)
- Stan
Franklin.
A
computer-based model of Crick and Koch's Framework for Consciousness.
Science & Consciousness Review, pages 1–8, 2003.
- Stan
Franklin.
An Autonomous Software Agent for Navy Personnel Work: A Case Study.
Human Interaction with Autonomous Systems in Complex Environments: Papers
from 2003 AAAI Spring Symposium, pages 60–65, 2003.
- Stan
Franklin.
IDA, a
Conscious Artifact?.
Journal of Consciousness Studies, 10(4-5):47–66, 2003.
- Arpad Kelemen, Yulan Liang,
Robert Kozma, and Stan Franklin.
Optimizing
intelligent agent's constraint satisfaction with neural networks.
In Recent advances in intelligent paradigms and applications,
pages 255–272. Physica Verlag, 2003.
- Stan Franklin and Dan Jones.
A Triage Information Agent (TIA) based on the IDA Technology.
In AAAI Fall Symposium on Dialogue Systems for Health
Communication, 2004.
- Stan Franklin and Lee
McCauley.
Feelings
and emotions as motivators and learning facilitators.
AAAI Spring Symposium - Technical Report, pages 48–51, 2004.
(doi:10.1.1.2.5301)
- Uma Ramamurthy, Sidney K.
D'Mello, and Stan Franklin.
Modified sparse distributed memory as transient episodic memory for cognitive
software agents.
In Conference Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, volume 6, pages 5858–5863, 2004.
(doi:10.1109/ICSMC.2004.1401130)
- Bernard J.
Baars.
Global workspace theory of consciousness: Toward a cognitive neuroscience of
human experience.
Progress in Brain Research, 150:45–53, 2005.
(doi:10.1016/S0079-6123(05)50004-9)
- Stan
Franklin.
A “
Conciousness"-Based Architecture for a Functioning Mind.
In Visions of Mind, pages 181–207. 2005.
- Stan
Franklin.
A “Consciousness” Based Architecture for a Functioning Mind.
In Visions of Mind, pages 149–175. 2005.
- Stan
Franklin.
Perceptual Memory and Learning: Recognizing, Categorizing, and Relating.
In Proceedings of the Symposium on Developmental Robotics: American
Association for Artificial Intelligence (AAAI), 2005.
- Stan
Franklin.
Perceptual Memory and Learning: Recognizing, Categorizing, and Relating.
In Proceedings of the Symposium on Developmental Robotics: American
Association for Artificial Intelligence (AAAI), 2005.
- Stan Franklin, Bernard J.
Baars, Uma Ramamurthy, and Matthew Ventura.
The role of consciousness in memory.
Brains, Minds and Media, 1(1), 2005.
- Arpad Kelemen and Yulan
Liang.
Optimizing Decision Making with Neural Networks in Software Agents.
In Proceedings of the 5th WSEAS international conference on Simulation,
modelling and optimization, pages 256–261, 2005.
- Arpad Kelemen, Stan Franklin,
and Yulan Liang.
Constraint
Satisfaction in “Conscious” Software Agents—A Practical
Application.
Applied Artificial Intelligence, 19(5):491–514, 2005.
(doi:10.1080/08839510590917870)
- Anil K.
Seth and Bernard J. Baars.
Neural Darwinism and consciousness.
Consciousness and Cognition, 14(1):140–168, 2005.
(doi:10.1016/j.concog.2004.08.008)
- S. K. D'Mello, Stan
Franklin, Uma Ramamurthy, and Bernard J.
Baars.
A Cognitive Science Based Machine
Learning Architecture.
AAAI Spring Symposium: Between a Rock and a Hard Place: Cognitive Science
Principles Meet AI-Hard Problems, 2006.
- Sidney K. D'Mello, Uma
Ramamurthy, Aregahegn Negatu, and Stan
Franklin.
A Procedural Learning Mechanism for Novel Skill Acquisition.
In Adaptation in Artificial and Biological Systems, AISB'06, pages
184–185, 2006.
- Stan Franklin and F. G.
Patterson.
The
LIDA architecture: Adding new modes of learning to an intelligent,
autonomous, software agent.
In Integrated Design and Process Technology, 2006.
- Stan Franklin and Uma
Ramamurthy.
Motivations, Values and Emotions: Three sides of the same coin.
In Proceedings of the Sixth International Workshop on Epigenetic
Robotics, pages 41–48, 2006.
- Uma Ramamurthy, Bernard J.
Baars, Sidney K. D'Mello, and Stan Franklin.
LIDA: A
Working Model of Cognition.
In Proceedings of the 7th International Conference on Cognitive
Modeling, pages 244–249, 2006.
- Uma Ramamurthy, Sidney
D'Mello, and Stan Franklin.
Realizing Forgetting in a Modified Sparse Distributed Memory System.
In CogSci 2006, pages 1992–1997, 2006.
- Bernard J. Baars and Stan
Franklin.
An architectural model of conscious and unconscious brain functions: Global
Workspace Theory and IDA.
Neural Networks, 20(9):955–961, 2007.
(doi:10.1016/j.neunet.2007.09.013)
- Bernard J. Baars, Uma
Ramamurthy, and Stan Franklin.
How deliberate, spontaneous and unwanted memories emerge in a computational
model of consciousness.
Involuntary memory, 2007.
- Sidney K. D'Mello and Stan
Franklin.
Exploring
the Complex Interplay between AI and Consciousness.
AAAI Fall Symposium on AI and Consciousness: Theoretical Foundations and
Current Approaches, pages 49–54, 2007.
- Stan
Franklin.
A Foundational Architecture for Artificial General Intelligence.
Advances in Artificial General Intelligence: Concepts, Architectures and
Algorithms, pages 36–54, 2007.
- Stan Franklin, Uma
Ramamurthy, Sidney K. D´Mello, Lee McCauley,
Aregahegn Negatu, Rodrigo Silva L., and
Vivek Datla.
LIDA:
A computational model of global workspace theory and developmental
learning.
AAAI Fall Symposium on AI and Consciousness: Theoretical Foundations and
Current Approaches, pages 61–66, 2007.
- Aregahegn Negatu, Sidney K.
D'Mello, and Stan Franklin.
Cognitively
Inspired Anticipation and Anticipatory Learning Mechanisms for Autonomous
Agents.
In Workshop on Anticipatory Behavior in Adaptive Learning Systems,
pages 108–127, 2007.
- Ron
Sun and Stan Franklin.
Computational
models of consciousness: A taxonomy and some examples.
In The Cambridge handbook of consciousness, pages 151–174.
2007.
- Stan Franklin and Michael H.
Ferkin.
Using Broad Cognitive Models and Cognitive Robotics to Apply Computational
Intelligence to Animal Cognition.
In Applications of Computational Intelligence in Biology, pages
363–394. Springer Berlin Heidelberg, 2008.
- David Friedlander and Stan
Franklin.
LIDA
and a theory of mind.
In Proceedings of the first AGI conference, volume 171, pages
137–148, 2008.
- Bernard J. Baars and Stan
Franklin.
Consciousness
Is Computational: the LIDA Model of Global Workspace Theory.
International Journal of Machine Consciousness, 1(1):23–32, 2009.
(doi:10.1142/S1793843009000050)
- Stan Franklin, Sidney
D'Mello, Bernard J. Baars, and Uma Ramamurthy.
Evolutionary
Pressures for Perceptual Stability and Self As Guides To Machine
Consciousness.
International Journal of Machine Consciousness, 1(1):99–110,
2009.
(doi:10.1142/S1793843009000104)
- S. Franklin and B. J. Baars.
Two varieties of unconscious processes.
In New Horizons inthe Neuroscience of Consciousness, pages
91–102. 2010.
- Stan Franklin and Bernard J.
Baars.
Spontaneous Remembering is the Norm: What Integrative Models Tell Us About
Human Consciousness and Memory.
In J. H. Mace, editor, The Act of Remembering: Toward an
Understanding of How We Recall the Past, pages 83–110.
Wiley-Blackwell, Oxford, 2010.
(doi:10.1002/9781444328202.ch6)
- Ryan
McCall, Stan Franklin, and David Friedlander.
Grounded Event-Based and Modal Representations for Objects, Relations,
Beliefs, etc.
In Proceedings of the Florida Artificial Intelligence Research Society
Conference, 2010.
- Ryan
McCall, Javier Snaider, and Stan Franklin.
Sensory
and Perceptual Scene Representation.
Journal of Cognitive Systems Research, 2010.
- Wendell Wallach, Stan
Franklin, and Colin Allen.
A conceptual and computational model of moral decision making in human and
artificial agents.
Topics in Cognitive Science, 2(3):454–485, 2010.
(doi:10.1111/j.1756-8765.2010.01095.x)
- D. M.
Wilkes, Stan Franklin, Erdem Erdemir,
Stephen Gordon, Steve Strain,
Karen Miller, and Kazuhiko Kawamura.
Heterogeneous artificial agents for triage nurse assistance.
In Proceedings of the 10th IEEE-RAS International Conference on Humanoid
Robots, pages 130–137, 2010.
(doi:10.1109/ICHR.2010.5686839)
- Daniela López De Luise,
Gabriel Barrera, and Stan Franklin.
Robot
Localization Using Consciousness.
Journal of Pattern Recognition Research, 1:96–119, 2011.
- Sidney D'Mello and Stan
Franklin.
A Cognitive Model's View of Animal Cognition.
Current Zoology, 47(4), 2011.
(doi:10.1017/CBO9781107415324.004)
- Tamas
Madl, Bernard J. Baars, and Stan Franklin.
The timing of the cognitive cycle.
PLoS ONE, 6(4), 2011.
(doi:10.1371/journal.pone.0014803)
- Stephen Strain and Stan
Franklin.
Modeling
Medical Diagnosis Using a Comprehensive Cognitive Architecture.
Journal of Healthcare Engineering, 2:241–258, 2011.
(doi:10.1260/2040-2295.2.2.241)
- Usef Faghihi and Stan
Franklin.
The LIDA
Model as a Foundational Architecture for AGI.
Theoretical Foundations of Artificial General Intelligence,
4:103–121, 2012.
(doi:10.2991/978-94-91216-62-6_7)
- Usef
Faghihi, Ryan McCall, and Stan Franklin.
A Computational Model
of Attentional Learning in a Cognitive Agent.
Biologically Inspired Cognitive Architectures, 2:48–56, 2012.
(doi:10.1016/j.knosys.2011.09.005)
- Stan Franklin, Steve Strain,
Javier Snaider, Ryan McCall, and
Usef Faghihi.
Global Workspace Theory, its LIDA model and the underlying neuroscience.
Biologically Inspired Cognitive Architectures, 1:32–43, 2012.
(doi:10.1016/j.bica.2012.04.001)
- Tamas Madl and Stan Franklin.
A
LIDA-based model of the attentional blink.
In Proceedings of International Conference on Cognitive Modeling
(ICCM), pages 283–288, 2012.
- Uma Ramamurthy and Stan
Franklin.
Self-System
in a Model of Cognition.
International Journal of Machine Consciousness, 4(2):325–333,
2012.
(doi:10.1142/S1793843012400185)
- Uma Ramamurthy, Stan
Franklin, and Pulin Agrawal.
Self-System
in a Model of Cognition.
International Journal of Machine Consciousness, 4(4):325–333,
2012.
(doi:10.1142/S1793843012400185)
- Javier Snaider, Ryan McCall,
and Stan Franklin.
Time production and representation in a conceptual and computational cognitive
model.
Cognitive Systems Research, 13(1):59–71, 2012.
(doi:10.1016/j.cogsys.2010.10.004)
- Stan Franklin, Steve Strain,
Ryan McCall, and Bernard Baars.
Conceptual
Commitments of the LIDA Model of Cognition.
Journal of Artificial General Intelligence, 4(2):1–22, 2013.
(doi:10.2478/jagi-2013-0002)
- Tamas
Madl, Stan Franklin, Ke Chen, and
Robert Trappl.
Spatial
Working Memory in the LIDA Cognitive Architecture.
In Proceedings of the 12th international conference on cognitive
modelling, volume 384-390, 2013.
- Daqi Dong and Stan Franklin.
Sensory Motor System: Modeling the Process of Action Execution.
In Proceedings of the 36th Annual Conference of the Cognitive Science
Society, pages 2145–2150, 2014.
- Stan Franklin, Tamas Madl,
Sidney D'Mello, and Javier Snaider.
LIDA: A systems-level architecture for cognition, emotion, and learning.
IEEE Transactions on Autonomous Mental Development, 6(1):19–41,
2014.
(doi:10.1109/TAMD.2013.2277589)
- Javier Snaider and Stan
Franklin.
Vector LIDA.
Energy Procedia, 41:188–203, 2014.
(doi:10.1016/j.procs.2014.11.103)
- Pulin Agrawal and Stan
Franklin.
Multi-layer Cortical Learning Algorithms.
In IEEE Symposium on Computational Intelligence, Cognitive Algorithms,
Mind, and Brain, pages 141–147, 2015.
(doi:10.1109/CCMB.2014.7020707)
- Daqi Dong and Stan Franklin.
A New Action Execution Module for the Learning Intelligent Distribution Agent
(LIDA): The Sensory Motor System.
Cognitive Computation, 7(5):552–568, 2015.
(doi:10.1007/s12559-015-9322-3)
- Daqi Dong and Stan Franklin.
Modeling Sensorimotor Learning in a Cognitive Model using a Dynamic Learning
Rate.
Biologically Inspired Cognitive Architectures, 14, 2015.
- Daqi
Dong, Stan Franklin, and Pulin Agrawal.
Estimating Human Movements Using Memory of Errors.
Procedia Computer Science, 71:1–10, 2015.
(doi:10.1016/j.procs.2015.12.174)
- Usef
Faghihi, Clayton Estey, Ryan McCall, and
Stan Franklin.
A cognitive model
fleshes out Kahneman's fast and slow systems.
Biologically Inspired Cognitive Architectures, 11(2015):38–52,
2015.
(doi:10.1016/j.bica.2014.11.014)
- Tamas Madl and Stan Franklin.
Constrained Incrementalist Moral Decision Making for a Biologically Inspired
Cognitive Architecture.
In Robert Trappl, editor, A Construction Manual for
Robots' Ethical Systems. 2015.
(doi:10.1017/CBO9781107415324.004)
- Tamas
Madl, Stan Franklin, Ke Chen,
Daniela Montaldi, and Robert Trappl.
Towards real-world capable spatial memory in the LIDA cognitive architecture.
Biologically Inspired Cognitive Architectures, 16, 2015.
(doi:10.1016/j.bica.2016.02.001)
- Steve
Strain, Sean Kugele, and Stan Franklin.
The learning intelligent distribution agent (LIDA) and medical agent X (MAX):
Computational intelligence for medical diagnosis.
IEEE Symposium on Computational Intelligence for Human-like
Intelligence, 2015.
(doi:10.1109/CIHLI.2014.7013390)
- Stan Franklin, Tamas Madl,
Steve Strain, Usef Faghihi, Daqi
Dong, Sean Kugele, Javier Snaider,
Pulin Agrawal, and Sheng Chen.
A LIDA cognitive model tutorial.
Biologically Inspired Cognitive Architectures, 16, 2016.
(doi:10.1016/j.bica.2016.04.003)
- Tamas
Madl, Stan Franklin, Javier Snaider, and
Usef Faghihi.
Continuity and the Flow of Time — A Cognitive Science Perspective.
Philosophy and Psychology of Time, 2016.