• R. J. Duro, J. Santos, F. Bellas, and A. Lamas. On Line Darwinist Cognitive Mechanism for an Artificial Organism. In Proceedings supplement book SAB2000, 2000.
  • F. Bellas, J. A. Becerra, and R. J. Duro. Using evolution for thinking and deciding. In Proceedings of the WSES International Conference on Neural Networks and Applications, 2001.
  • F. Bellas, A. Lamas, and R. J. Duro. Multilevel Darwinist brain and autonomously learning to walk. In Proceedings of the International Conference on Computational Intelligence, Robotics, 2001.
  • F. Bellas and R. J. Duro. Modelling the world with statistically neutral PBGAs. Enhancement and real applications. In Proceedings of the 9th International Conference on Neural Information Processing, pages 2093–2097, 2002. (doi:10.1109/ICONIP.2002.1199045)
  • Francisco Bellas and Richard J. Duro. Introducing Long Term Memory in an ANN based Multilevel Darwinist Brain. In International Work-Conference on Artificial Neural Networks, pages 590–598, 2003. (doi:10.1007/3-540-44868-3_75)
  • F. L. Pena, F. Bellas, R. J. Duro, and M. S. Simon. Reconstructing irregularly sampled laser Doppler velocimetry signals by using artificial neural networks. In Proceedings of the 2nd IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2003, pages 99–105, 2003. (doi:10.1109/IDAACS.2003.1249526)
  • F. Bellas and R. J. Duro. Some thoughts on the use of sampled fitness functions for the multilevel Darwinist brain. Information Sciences, 161(3-4):159–179, 2004. (doi:10.1016/j.ins.2003.05.004)
  • F. Bellas, J. A. Becerra, and R. J. Duro. Induced Behavior in a Real Agent Using the Multilevel Darwinist Brain. In International Work-Conference on the Interplay Between Natural and Artificial Computation, pages 425–434, 2005. (doi:10.1007/11499305_44)
  • J. Monroy, Jose A. Becerra, Francisco Bellas, Richard J. Duro, and Fernando López-Peña. A Profiling Based Intelligent Resource Allocation System. In nternational Conference on Knowledge-Based and Intelligent Information and Engineering Systems, volume 3681, pages 840–846, 2005. (doi:10.1007/11552413_120)
  • F. Bellas, J. A. Becerra, and R. J. Duro. Construction of a Memory Management System in an On-line Learning Mechanism. Proceedings European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pages 26–28, 2006.
  • F. Bellas, J. A. Becerra, and R. J. Duro. Some experimental results with a two level memory management system in the Multilevel Darwinist Brain. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2006.
  • F. Bellas, A. Faiña, A. Prieto, and R. J. Duro. Adaptive Learning Application of the MDB Evolutionary Cognitive Architecture in Physical Agents. International Conference on Simulation of Adaptive Behavior, 2006. (doi:10.1007/11840541)
  • Fernando López Peña, Francisco Bellas, Richard J. Duro, and María Luisa Sánchez Simón. Using Adaptive Artificial Neural Networks for Reconstructing Irregularly Sampled Laser Doppler Velocimetry Signals. IEEE Transactions on Instrumentation and Measurement, 55(3):916–922, 2006. (doi:10.1109/TIM.2006.873773)
  • J. Monroy, J. A. Becerra, F. Bellas, and R. J. Duro. Intelligent virtual interface for improving performance in HPC centers by modelling users and their satisfaction. In Proceedings of 2006 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, VECIMS 2006, pages 69–74, 2006. (doi:10.1109/VECIMS.2006.250793)
  • F. López Peña, F. Bellas, R. J. Duro, and P. Fariñas. On the Analysis of Turbulent Flow Signals by Artificial Neural Networks and Adaptive Techniques. Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference, pages 41–46, 2007. (doi:10.1115/FEDSM2007-37403)
  • F. Bellas, A. Faina, G. Varela, and R. J. Duro. A cognitive developmental robotics architecture for lifelong learning by evolution in real robots. In Proceedings of the International Joint Conference on Neural Networks, 2010. (doi:10.1109/IJCNN.2010.5596771)
  • Francisco Bellas, Richard J. Duro, Andrés Faiña, and Daniel Souto. Multilevel darwinist brain (MDB): Artificial evolution in a cognitive architecture for real robots. IEEE Transactions on Autonomous Mental Development, 2(4):340–354, 2010. (doi:10.1109/TAMD.2010.2086453)
  • R. J. Duro, F. Bellas, and J. A. Becerra. Evolutionary Architecture for Lifelong Learning and Real-Time Operation in Autonomous Robots. In P. Angelov, D. P. Filev, and N. Kasabov, editors, Evolving Intelligent Systems: Methodology and Applications, pages 365–400. 2010. (doi:10.1002/9780470569962.ch16)
  • R. J. Duro, F. Bellas, P. Caamano, and G. Varela. Automatic model decomposition and reuse in an evolutionary cognitive mechanism. Evolving Systems, 1(2):129–141, 2010. (doi:10.1007/s12530-010-9012-z)
  • B. Santos-Diez, F. Bellas, A. Faiña, and R. J. Duro. Lifelong Learning by Evolution in Robotics: Bridging the Gap from Theory to Reality. In Proceedings of the IEEE Evolving and Adaptive Intelligent Systems, 2010.
  • R. Salgado, F. Bellas, P. Caamano, B. Santos-Diez, and R. J. Duro. A procedural Long Term Memory for cognitive robotics. In Proceedings of the IEEE Conference on Evolving and Adaptive Intelligent Systems, pages 57–62, 2012. (doi:10.1109/EAIS.2012.6232805)
  • Pilar Caamaño, Andrés Faíña, Francisco Bellas, and Richard J. Duro. Multiscale dynamic learning in cognitive robotics. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7931 LNCS(PART 2):56–65, 2013. (doi:10.1007/978-3-642-38622-0_6)
  • Francisco Bellas, Pilar Caama??o, Andr??s Fai??a, and Richard J. Duro. Dynamic learning in cognitive robotics through a procedural long term memory. Evolving Systems, 5(1):49–63, 2014. (doi:10.1007/s12530-013-9079-4)
  • Richard J. Duro, Francisco Bellas, José A. Becerra, and Rodrigo Salgado. A role for sleep in artificial cognition through deferred restructuring of experience in autonomous machines. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8575 LNAI:1–10, 2014. (doi:10.1007/978-3-319-08864-8_1)