• Manuela M Veloso. Flexible Strategy Learning: Analogical Replay of Problem Solving Episodes. In Proceedings of AAAI-94, pages 595–600, 1986.
  • Jaime Carbonell and Manuela Veloso. Integrating derivational analogy into a general problem solving architecture. In Proceedings of a Workshop on Case-Based Reasoning, pages 104–124, 1988.
  • Steven Minton, Jaime Carbonell, Craig A. Knoblock, Daniel R. Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-Based Learning: A Problem Solving Perspective. Artificial Intelligence, 40(1–3):63–118, 1989.
  • M. Veloso. Nonlinear problem solving using intelligent casual-commitment. Technical Report CMU-CS-89-210, 1989.
  • Jaime G. Carbonell and Yolanda Gil. Learning by Experimentation: The Operator Refinement Method. Machine learning: An artificial intelligence approach, 3:191–213, 1990.
  • Ralph H. Freeman. PRODIGY: Its Exploration and Use. Technical Report MLI-90-10, 1990.
  • Craig A. Knoblock. Learning abstraction hierarchies for problem solving. In Proceedings of the eighth National conference on Artificial intelligence, pages 923–928, 1990.
  • Craig A. Knoblock. Learning abstraction hierarchies for problem solving. In Proceedings of the eighth National conference on Artificial intelligence, pages 923–928, 1990.
  • Manuela M. Veloso, Alicia Pérez, and Jaime G. Carbonell. Nonlinear Planning with Parallel Resource Allocation. In Proceedings of the DARPA Workshop of Innovative Approaches to Planning, Scheduling and Control, pages 207–212, 1990.
  • Jaime G. Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, and Craig Knoblock. PRODIGY: An Integrated Architecture for Planning and Learning. ACM SIGART Bulletin, 2(4):160–163, 1991. (doi:10.1145/122344.122377)
  • Yolanda Gil. A Domain-Independent Framework for Effective Experimentation in Planning. In Proceedings of the Eight International Workshop on Machine Leaning, 1991.
  • Yolanda Gil. A Specification of Manufacturing Processes for Planning. Technical Report CMU-CS-91-179, 1991.
  • Manuela M. Veloso and Jaime G. Carbonell. Learning by Analogical Replay in PRODIGY: First Results. 1991.
  • Jim Blythe and Manuela Veloso. An Analysis of Search Techniques for a Totally-Ordered Nonlinear Planner. In Proceedings of the First International Conference on AI Planning Systems, pages 13–19, 1992.
  • Jaime G. Carbonell, Jim Blythe, Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn, Craig Knoblock, Steven Minton, P. Alicia, Scott Reilly, Manuela Veloso, and Xuemei Wang. PRODIGY4.0: TheManual and Tutorial. Technical Report CMU-CS-92-150, 1992.
  • Manuela M. Veloso. Learning by analogical reasoning in general problem solving. Technical Report CMU-CS-92-174, 1992.
  • Daniel Borrajo and Manuela Veloso. Bounded Explanation and Inductive Refinement for Acquiring Control Knowledge. In Proceedings of the Third International Workshop on Knowledge Compilation and Speedup Learning, pages 21–27, 1993.
  • Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial Intelligence, 62(2):255–301, 1993. (doi:10.1016/0004-3702(93)90080-U)
  • Karen Haigh and Manuela Veloso. Combining search and analogical reasoning in path planning from road maps. In Proceedings of the AAAI-93 Workshop on Case-Based Reasoning, 1993.
  • M. Alicia Perez and Jaime G. Carbonell. Automated Acquisition of Control Knowledge to Improve the Quality of Plans. Technical Report CMU-CS-93-142, 1993.
  • Manuela Veloso. PRODILOGY/ANALOGY: Analogical reasoning in general problem solving. In Topics in Case-Based Reasoning, 1993.
  • Manuela M. Veloso. Planning for Complex Tasks: Replay and Merging of Multiple Simple Plans. In Preprints of the AAAI 1993 Spring Symposium Series, Workshop on Foundations of Automatic Planning: The Classical Approach and Beyond, pages 146–150, 1993.
  • Manuela M. Veloso and Jaime G. Carbonell. Toward Scaling Up Machine Learning: A Case Study with Derivational Analogy in PRODIGY. In S. Minton, editor, Machine Learning Methods for Planning, pages 233–272. Morgan Kaufmann, 1993. (doi:10.1016/B978-1-4832-0774-2.50013-5)
  • Manuela M. Veloso and Jaime G. Carbonell. Towards Scaling Up Machine Learning: A Case Study with Derivational Analogy in PRODIGY. In S. Minton, editor, Machine Learning Methods for Planning, pages 233–272. 1993.
  • Daniel Borrajo and Manuela Veloso. Incremental Learning of Control Knowledge for Improvement of Planning Efficiency and Plan Quality. In Planning and Learning: On to Real Applications: Papers from the 1994 AAAI Fall Symposium, 1994.
  • Daniel Borrajo and Manuela Veloso. Incremental learning of control knowledge for nonlinear problem solving. In Machine Learning: ECML-94, pages 64–82, 1994.
  • Daniel Borrajo and Manuela Veloso. Multiple Target Concept Learning and Revision in Nonlinear Problem Solving. In Working notes of the ECML/MLNet Workshop on Theory Revision and Restructuring, 1994.
  • Eugene Fink and Manuela Veloso. Prodigy Planning Algorithm. Technical Report CMU-CS-94-123, 1994.
  • Eugene Fink and Manuela Veloso. Prodigy Planning Algorithm. Technical report CMU-94-123, 1994.
  • Eugene Fink and Qiang Yang. Search Reduction in Planning with Primary Effects. Technical Report CMU-CS-94-206, 1994.
  • Yolanda Gil and M. Alicia Perez. Applying a General-Purpose Planning and Learning Architecture to Process Planning. In Proceedigs of the AAAI 1994 Fall Symposium on Planning and Learning, pages 48–52, 1994.
  • Karen Zita Haigh, J. R. Shewchuk, and Manuela M. Veloso. Route planning and learning from execution. In Preprints of the AAAI 1994 Fall Symposium on Planning and Learning: On to Real Applications, 1994.
  • M. Alicia Perez and Jaime Carbonell. Control Knowledge to Improve Plan Quality. In Proc. Second International Conference on Artificial Intelligence Planning Systems, pages 323–328, 1994.
  • Peter Stone and Manuela Veloso. Learning to Solve Complex Planning Problems - Finding Useful Auxiliary Problems. In Proceedings of the aaai 1994 Fall Symposium on Planning and Learning, pages 137–141, 1994.
  • Manuela M. Veloso and Jim Blythe. Linkability: Examining Causal Link Commitments in Partial-order Planning. In Proceedings of the Second International Conference on Artificial Intelligence Planning Systems, 1994.
  • Manuela Veloso and Daniel Borrajo. Learning Strategy Knowledge Incrementally. In Proceedings of the Sixth IEEE International Conference on Tools with Artificial Intelligence, pages 484–490, 1994.
  • Xuemei Wang and Manuela Veloso. Learning Planning Operators by Observation and Practice. In Proceedings of the Second International Conference on AI Planning Systems, pages 335–340, 1994.
  • Jim Blythe, Manuela Veloso, and Luiz Edival De Souza. The PRODIGY User Interface. Tech. Rep. No. CMU-CS-97-114, 1995.
  • Karen Haigh and Manuela Veloso. Route planning by analogy. In Case-Based Reasoning Research and Development, 1995. (doi:10.1007/3-540-60598-3_16)
  • Manuela Veloso, Jaime Carbonell, Alicia Pérez, Daniel Borrajo, Eugene Fink, and Jim Blythe. Integrating planning and learning: the PRODIGY architecture. Journal of Experimental & Theoretical Artificial Intelligence, 7(1):81–120, 1995. (doi:10.1080/09528139508953801)
  • Jim Blythe and Manuela Veloso. Learning to Improve Uncertainty Handling in a Hybrid Planning System. In AAAI Fall Symposium on Learning Complex Behavior, 1996.
  • E. Fink and M. Veloso. Formalizing the PRODIGY Planning Algorithm. In M. Gallop and A. Milani, editors, New Directions in AI Planning, pages 261–272. IOS Press, Amsterdam, 1996.
  • Karen Zita Haigh and Manuela M. Veloso. Planning with Dynamic Goals for Robot Execution. In Plan Execution: Problems and Issues: Papers from the 1996 AAAI Fall Symposium, pages 65–71, 1996.
  • Luiz Edival De Souza and Manuela M. Veloso. Acquisition of Flexible Planning Knowledge from Means-ends Models for Industrial Processes. 1996.
  • Peter Stone and Manuela Veloso. User-guided interleaving of planning and execution. In New Directions in AI Planning, pages 103–114, 1996.
  • Jim Blythe and Manuela M. Veloso. Analogical Replay for Efficient Conditional Planning. In AAAI-97 Proceedings, 1997.
  • Daniel Borrajo and Manuela Veloso. Lazy incremental learning of control knowledge for efficiently obtaining quality plans. Artificial Intelligence Review, 11(1-5):371–405, 1997.
  • Michael T. Cox and Manuela M. Veloso. Supporting combined human and machine planning: An interface for planning by analogical reasoning. In Case-Based Reasoning Research and Development: Second International Conference on Case-Based Reasoning, pages 531–540, 1997. (doi:10.1007/3-540-63233-6_522)
  • Karen Zita Haigh and Manuela M. Veloso. High-Level Planning and Low-Level Execution: Towards a Complete Robotic Agent. In Proceedings of the first international conference on Autonomous agents, 1997.
  • Reid Simmons, Richard Goodwin, Karen Zita Haigh, Sven Koenig, and Joseph O'Sullivan. A Layered Architecture for Office Delivery Robots. In Proceedings of the first international conference on Autonomous agents, 1997.
  • Reid Simmons, Richard Goodwin, Karen Zita Haigh, Sven Koenig, Joseph O'Sullivan, and Manuela M. Veloso. XAVIER: Experience with a Layered Robot Architecture. ACM Sigart Bulletin, 8(1-4):22–33, 1997. (doi:10.1017/CBO9781107415324.004)
  • Manuela M. Veloso. Merge strategies for multiple case plan replay. In International Conference on Case-Based Reasoning, volume 1266, pages 413–424, 1997. (doi:10.1007/3-540-63233-6_511)
  • Manuela M. Veloso, Alice M. Mulvehill, and Michael T. Cox. Rationale-Supported Mixed-Initiative Case-Based Planning. In Proceedings of AAAI/IAAI, 1997.
  • R Bergmann, H Muñoz-Avila, M Veloso, and E Melis. Case-based Reasoning Applied to Planning Tasks. In backslashuppercase {CBR} Technology: From Foundations to Applications. 1998.
  • Michael T. Cox and Manuela M. Veloso. Goal transformations in continuous planning. In Proceedings of the 1998 AAAI fall symposium on …, 1998.
  • Eugene Fink and Jim Blythe. A Complete Bidirectional Planner. In Proceedings of AIPS, 1998.
  • Karen Zita Haigh and Manuela Veloso. Planning, Execution in a Robotic and Learning Agent. In Proceedings of the Fourth International Conference on AI Planning Systems, pages 120–127, 1998.
  • R. Jensen and M. Veloso. Interleaving deliberative and reactive planning in dynamic multi-agent domains. In Proceedings of the AAAI Fall Symposium on on Integrated Planning for Autonomous Agent Architectures, 1998.
  • Erica Melis and Jaime G. Carbonell. An Argument for Derivational Analogy. Advances in Analogy Research, pages 144–153, 1998.
  • Manuela M. Veloso, Martha E. Pollack, and Michael T. Cox. Rationale-Based Monitoring for Planning in Dynamic Environments. In AIPS 1998 Proceedings, pages 171–180, 1998.
  • K. Zita Haigh and M. M. Veloso. Interleaving planning and robot execution for asynchronous user requests. In Autonomous Agents. Springer, 1998. (doi:10.1109/IROS.1996.570649)
  • Michael T Cox. A Conflict of Metaphors: Modeling the Planning Process. In Summer Computer Simulation Conference, 2000.
  • Boris Kerkez and Michael T Cox. Planning for the User-Interface : Window Characteristics The Micro-Window Domain. In Proceedings of the 11th Midwest Artificial Intelligence and Cognitive Science Conference, pages 79–84, 2000.
  • D. Camacho, D. Borrajo, J. Molina, and R. Aler. Flexible Integration of Planning and Information Gathering. In European Conference on Planning, pages 73–84, 2001.
  • Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using Genetic Programming to Leanr and Improve Control Knowledge. Artificial Intelligence, 141(1–2):29–56, 2002.
  • Ricardo Aler, Daniel Borrajo, and Susana Fernandez. On providing prior knowledge for learning relational search heuristics. In Taller de Planificación, Scheduling y Razonamiento Temporal en el marco de la X Conferencia de la Asociacion espanola para la Inteligencia Artificial, 2003.
  • Eugene Fink and Jim Blythe. Prodigy bidirectional planning. Journal of Experimental & Theoretical Artificial Intelligence, 17(3):161–200, 2005. (doi:10.1080/09528130500281778)
  • Michael T. Cox. Perpetual Self-Aware Cognitive Agents. AI Magazine, 28(1):32, 2007. (doi:10.1609/AIMAG.V28I1.2027)
  • Daniel Borrajo, Anna Roubícková, and Ivan Serina. Progress in Case-Based Planning. ACM Computing Surveys, 47(2), 2015. (doi:10.1145/2674024)