• John E. Laird and Allen Newell. A universal weak method. Technical Report CMU-CS-83-141, 1983.
  • J. E. Laird, P. S. Rosenbloom, and A. Newell. Towards chunking as a general learning mechanism. In AAAI Proceedings, pages 188–192, 1984.
  • P. S. Rosenbloom, J. E. Laird, J. McDermott, A. Newell, and E. Orciuch. Ri-Soar: An Experiment in Knowledge-Intensive Programming in a Problem-Solving Architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(5):561–569, 1985.
  • John E. Laird. Soar User's Manual. 1986.
  • John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An Architecture For General Intelligance. Artificial Intelligence, 33(1):1–64, 1987.
  • Paul S. Rosenbloom, John E. Laird, and Allen Newell. Knowledge Level Learning In Soar. Artificial Intelligence, 47(1):289–325, 1987.
  • D. M. Steier, J. E. Laird, A. Newell, P. S. Rosenbloom, R. A. Flynn, A. Golding, T. A. Polk, O. G. Shivers, A. Unruh, and G. R. Yost. Varieties of Learning in SOAR: 1987. Technical Report AIP-6, 1987.
  • Richard L. Lewis, Scott B. Huffman, Bonnie John, John E. Laird, Jill Fain Lehman, Allen Newell, Paul S. Rosenbloom, Tony Simon, and Shirley Tessler. Soar as a unified theory of cognition. Technical Report AIP-133, 1988. (doi:10.1126/science.3291119)
  • Simon P. Levine, John E. Laird, and Ned L. Kirsch. Expert Systems for Guidance of Cognitvely Impaired People Performing Daily Living Activities. In Proceedings of the 11th Annual International Conference on Engineering in Medicine and Biology, 1989.
  • Richard L. Lewis, Allen Newell, and Thad A. Polk. Toward a Soar theory of taking instructions for immediate reasoning tasks. Technical Report AIP-60, 1989.
  • Allen Newell, Paul S. Rosenbloom, and John E. Laird. Symbolic architectures for cognition. Technical Report AIP-62, 1989.
  • Paul S. Rosenbloom, Allen Newell, and John E. Laird. Towards the Knowledge Level in Soar: The Role of the Architecture. Technical Report AIP-65, 1989.
  • D. Ruiz and A. Newell. Tower-noticing triggers strategy-change in the Tower of Hanoi: A Soar model. Technical Report AIP-66, pages 522–529, 1989.
  • J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in Soar: The Anatomy of a General Learning Mechanism JOHN. Machine Learning, 1:11–46, 1990.
  • Tony Simon. Modelling human cognitive development with explanation-based learning in Soar. Technical Report AIP-120, 1990.
  • John E. Laird. Preface for Special Section on Integrated Cognitive Architectures. SIGART Bulletin, 2(4), 1991. (doi:10.1145/122344.1063801)
  • John Laird, Mike Hucka, S Huffman, and Paul Rosenbloom. An analysis of Soar as an integrated architecture. ACM SIGART Bulletin, 2(4):98–103, 1991. (doi:10.1145/122344.122364)
  • John E. Laird, Eric S. Yager, Michael Hucka, and Christopher M. Tuck. Robo-Soar: An integration of external interaction, planning, and learning using Soar. Robotics and Autonomous Systems, 8(1-2):113–129, 1991. (doi:10.1016/0921-8890(91)90017-F)
  • Jill Fain Lehman, R. L. Lewis, and Allen Newell. Natural Language Comprehension in Soar. Technical Report CMU-CS-91-117, 1991.
  • Paul S. Rosenbloom, John E. Laird, Allen Newell, and Robert McCarl. A preliminary analysis of the Soar architecture as a basis for general intelligence. Artificial Intelligence, 47(1-3):289–325, 1991. (doi:10.1016/0004-3702(91)90057-Q)
  • Scott B. Huffman and John E. Laird. Dimensions of complexity in learning from interative instruction. Applications in Optical Science and Engineering, 1992.
  • Bonnie E. John and Alonso H. Vera. A GOMS analysis of a graphic machine-paced, highly interactive task. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 251–258, 1992. (doi:10.1145/142750.142805)
  • John Laird and Paul S. Rosenbloom. In pursuit of mind: The research of Allen Newell. AI Magazine, 13(4):17–45, 1992.
  • R. L. Lewis. Recent developments in the NL-Soar garden path theory. Technical Report CMU-CS-93-141, 1992.
  • Brian G. Milnes, Garrett Pelton, Robert Doorenbos, Mike Hucka, John Laird, Paul Rosenbloom, and Allen Newell. A Specification of the Soar Cognitive Architecture in Z. Technical Report CMU-CS-92-169, 1992.
  • Allen Newell. Précis of Unified theories of cognition. Behavioral and Brain Sciences, 15:425–492, 1992. (doi:10.1017/S0140525X00069478)
  • P. Rosenbloom, J. Laird, Allen Newell, and R. McCarl. A preliminary analysis of the SOAR achitecture as a basis for general intelligence. Technical Report AIP-64, 1992.
  • John E. Laird, Douglas J. Pearson, Randolph M. Jones, and Robert E. Wray. Dynamic Knowledge Integration during Plan Execution. In Plan execution: Problems and issues, papers from the 1996 Fall symposium, 1996.
  • R. M. Jones and J. E. Laird. Constraints on the design of a high-level model of cognition. In Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society, pages 358–363, 1997.
  • Randolph M. Jones, John E. Laird, and Paul E. Nielsen. Real-Time Intelligent Characters for a Non-Visual Simulation Environment. In Proceedings of the Computer Animation '98 Conference, 1998.
  • John E. Laird and Randolph M. Jones. Building Advanced Autonomous AI Systems for Large Scale Real Time Simulations. In Proceedings of the Computer Game Developers Conference, pages 365–378, 1998.
  • J. E. Laird, K. J. Coulter, R. M. Jones, P. G. Kenny, Frank Koss, and P. E. Nielsen. Integrating intelligent computer generated forces in distributed simulations: TacAir-Soar in STOW-97. In Proceedings of the 1998 Spring Simulation Interoperability Workshop, 1998.
  • Thad A. Polk and Allan Newell. Modeling Human Syllogistic Reasoning in Soar. Technical Report AIP-51, 1998.
  • F. E. Ritter, R. M. Jones, and G. D. Baxter. Reusable models and graphical interfaces: Realising the potential of a unified theory of cognition. In U. Schmidt, J. Krems, and F. Wysotzki, editors, Mind modeling—A cognitive science approach to reasoning, learning and discovery, pages 83–109. Pabst Scientific Publishing, Lengerich, 1998.
  • Robert E. Wray and John E. Laird. Maintaining Consistency in Hierarchical Reasoning. In Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 928–935, 1998.
  • Randolph M. Jones. Graphical Visualization of Situational Awareness and Mental State for Intelligent Computer-Generated Forces. In Proceedings of the Eighth Conference on Computer Generated Forces and Behavioral Representation, pages 219–222, 1999.
  • Randolph M. Jones, John E. Laird, Paul E. Nielsen, Karen J. Coulter, Patrick Kenny, and Frank V. Koss. Automated Intelligent Pilots for Combat Flight Simulation. AI Magazine, 20(1):27–42, 1999. (doi:10.1609/aimag.v20i1.1438)
  • Amy E. Henninger, Randolph M. Jones, and Eric Chown. A Symbolic-Connectionist Framework for Representing Emotions in Computer Generated Forces. In Proceedings of the Interservice/Industry Training /Simulation and Education Conference, volume 2001, 2001.
  • Robert E. Wray and Randolph M. Jones. Resolving contentions between initial and learned knowledge. In Proceedings of the 2001 International Conference on Artificial Intelligence, 2001.
  • Amy E. Henninger, Randolph M. Jones, and Eric Chown. Behaviors that Emerge from Emotion and Cognition: A First Evaluation. In Proceedings of the Interservice/Industry Training /Simulation and Education Conference, 2002. (doi:10.1145/860575.860627)
  • John E. Laird, Mazin Assanie, Benjamin Bachelor, Nathan Benninghoff, Syed Enam, Bradley Jones, Alex Kerfoot, Colin Lauver, Brian Magerko, Jeff Sheiman, Devvan Stokes, and Scott Wallace. A Test Bed for Developing Intelligent Synthetic Characters. In Papers from 2002 AAAI Spring Symposium: Artificial Intelligence and Interactive Entertainment II, pages 52–56, 2002.
  • R. E. Wray, J. E. Laird, A. Nuxoll, and R.M. Jones. Intelligent opponents for virtual reality trainers. In Proceedings of the Interservice/Industry Training /Simulation and Education Conference, 2002.
  • Robert E. Wray, James C. Beisaw, Randolph M. Jones, Frank V. Koss, Paul E. Nielsen, and Glenn Taylor. General, Maintainable, Extensible Communications for Computer Generated Forces. In Proceedings of the 11th Conference on Computer Generated Forces and Behavioral Represetation, pages 563–570, 2002.
  • W. G. Kennedy and K. A. De Jong. Characteristics of Long-Term Learning in Soar and its Application to the Utility Problem. Proceedings of the fifth international conference on machine learning, pages 337–344, 2003.
  • Brian S Magerko and John Laird. Building an Interactive Drama Architecture. In Proceedings of the 1st International Conference on Technologies for Interactive Digital Storytelling and Entertainment, 2003.
  • Scott A. Wallace and John E. Laird. Behavior bounding: Toward effective comparisons of agents & humans. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, 2003.
  • Robert E. Wray and Ronald Chong. Quantitative Explorations of Category Learning with Symbolic Concept Acquisition ATC Task & Human Experimental Results. In Proceedings of the 5th International Conference on Cognitive Modeling, 2003.
  • Robert E. Wray and John E. Laird. An architectural approach to ensuring consistency in hierarchical execution. Journal of Artificial Intelligence Research, 19:355–398, 2003. (doi:10.1613/jair.1142)
  • Robert E. Wray and John E. Laird. Variability in Human Behavior Modeling for Military Simulations. In Behavior Representation in Modeling & Simulation Conference (BRIMS), 2003.
  • E. G. P. Bovenkamp, J. Dijkstra, J. G. Bosch, and J. H. C. Reiber. Multi-agent segmentation of IVUS images. Pattern Recognition, 37(4):647–663, 2004. (doi:10.1016/j.patcog.2003.09.015)
  • Jacob Crossman, R. Wray, R. Jones, and Christian Lebiere. A high level symbolic representation for behavior modeling. In Behavioral Representation in Modeling and Simulation, 2004.
  • John E. Laird, Keegan R. Kinkade, Shiwali Mohan, and Joseph Z. Xu. Cognitive Robotics Using the Soar Cognitive Architecture. In Proceedings of the 6th International Conference on Cognitive Modelling, pages 226–330, 2004.
  • Brian Magerko and John E. Laird. Mediating the Tension between Plot and Interaction. In AAAI Workshop Series Challenges in Game Artificial Intelligence, 2004.
  • Brian Magerko, John E. Laird, Mazin Assanie, Alex Kerfoot, and Devvan Stokes. AI characters and directors for interactive computer games. In Proceedings of the 2004 Innovative Applications of Artificial Intelligence Conference, 2004.
  • Robert P. Marinier and John E. Laird. Toward a Comprehensive Computational Model of Emotions and Feelings. In Proceedings of Sixth International Conference on Cognitive Modeling: ICCM, pages 172–177, 2004.
  • Shelley Nason and John E. Laird. Soar-RL: Integrating Reinforcement Learning with Soar. Cognitive Systems Research, 6:51–59, 2004.
  • Andrew Nuxoll and John E. Laird. A Cognitive Model of Episodic Memory Integrated with a General Cognitive Architecture. In International Conference on Cognitive Modeling, 2004.
  • Andrew Nuxoll, John E. Laird, and Michael R. James. Comprehensive Working Memory Activation in Soar. In Sixth International Conference on Cognitive Modeling, 2004.
  • Douglas Pearson and J. Laird. Redux: Example-Driven Diagrammatic Tools for Rapid Knowledge Acquisition. In Proceedings of Behavior Representation in Modeling and Simulation, 2004.
  • Douglas Pearson and John E. Laird. Example-driven diagrammatic tools for rapid knowledge acquisition. In Proceedings of Behavior Representation in Modeling and Simulation, 2004.
  • Glenn Taylor and Robert E. Wray. Behavior Design Patterns: Engineering Human Behavior Models. In Behavior Representation in Modeling and Simulation (BRIMS), 2004.
  • Robert E. Wray, Sean Lisse, and Jonathan Beard. Investigating Ontology Infrastructures for Execution-Oriented Autonomous Agents. In Papers from the 2004 AAAI Spring Symposium Series: Knowledge Representation and Ontology for Autonomous Systems, 2004.
  • Douglas J. Pearson and John E. Laird. Incremental learning of procedural planning knowledge in challenging environments. Computational Intelligence, 21(4):414–439, 2005. (doi:10.1111/j.1467-8640.2005.00280.x)
  • Scott A. Wallace. S-Assess: A Library for Behavioral Self-Assessment. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, 2005. (doi:10.1145/1082473.1082512)
  • Robert E. Wray and Randolph M. Jones. An Introduction to Soar as an Agent Architecture. In Ron Sun, editor, Cognition and Multi-agent Interaction: From Cognitive Modeling to Social Simulation. Cambridge University Press, 2005. (doi:10.1017/CBO9780511610721.004)
  • Robert E. Wray, John E. Laird, Andrew Nuxoll, Devvan Stokes, and Alex Kerfoot. Synthetic Adversaries for Urban Combat Training. AI Magazine, 26(3):82–92, 2005.
  • Nicholas A. Gorski and John E. Laird. Experiments in Transfer Across Multiple Learning Mechanisms. In Group, 2006.
  • R. M. Jones, J. A. Crossman, C. Lebiere, and B. J. Best. An abstract language for cognitive modeling. In Proceedings of the Seventh International Conference on Cognitive Modeling, page 48105, 2006.
  • W. Kennedy and J. G. Trafton. Long-term symbolic learning in Soar and ACT-R. In Proceedings of the Seventh International Conference on Cognitive Modelling, pages 166–171, 2006.
  • Tolga Konik and John E. Laird. Learning goal hierarchies from structured observations and expert annotations. Machine Learning, 64(1-3):263–287, 2006. (doi:10.1007/s10994-006-7734-8)
  • Scott Lathrop and John E. Laird. Incorporating Visual Imagery into a Cognitive Architecture: An Initial Theory, Design, and Implementation. Technical Report CCA-TR-2006-01, 2006.
  • Robert P. Marinier and John E. Laird. A Cognitive Architecture Theory of Comprehension and Appraisal. In Agent Construction and Emotion, 2006.
  • B. S. Stensrud, Glenn Taylor, and Jacob Crossman. IF-Soar: A virtual, speech-enabled agent for indirect fire training. In Proceedings of the 25th Army Science Conference, 2006.
  • Yongjia Wang and John E. Laird. Integrating Semantic Memory into a Cognitive Architecture. Technical Report CCA-TR-2006-02, 2006.
  • Mark A. Cohen, Frank E. Ritter, and Steven R. Haynes. Using reflective learning to master opponent strategy in a competitive environment. In Proceedings of the International Conference on Cognitive Modeling, pages 157–162, 2007.
  • Nicholas A. Gorski and John E. Laird. Investigating Transfer Learning in the Urban Combat Testbed. Technical Report CCA-TR-2007-02, (September), 2007.
  • E. Hogewoning, J. Broekens, J. Eggermont, and E. G. P. Bovenkamp. Strategies for Affect-Controlled Action-Selection in Soar-RL. In Proceedings of the 2nd. IWINAC, LNCS 4528, 2007. (doi:10.1007/978-3-540-73055-2_52)
  • Scott D. Lathrop and John E. Laird. Towards Incorporating Visual Imagery into a Cognitive Architecture. In Proceedings of ICCM - 2007- Eighth International Conference on Cognitive Modeling, 2007.
  • Brian Magerko. Evaluating Preemptive Story Direction in the Interactive Drama Architecture. Journal of Game Development, 2(3):25–52, 2007.
  • Robert P. Marinier and John E. Laird. Computational Modeling of Mood and Feeling from Emotion. In Proceedings of 29th Annual Conference of the Cognitive Science Society, 2007.
  • Andrew M. Nuxoll and John E. Laird. Extending Cognitive Architecture with Episodic Memory. In Proceedings of the National Conference on Artificial Intelligence., 2007.
  • Glenn Taylor, Brian Stensrud, Susan Eitelman, Cory Dunham, and Echo Harger. Toward automating airspace management. In Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications, 2007. (doi:10.1109/CISDA.2007.368144)
  • Yongjia Wang and John E. Laird. The importance of action history in decision making and reinforcement learning. In Proceedings of the Eighth International Conference on Cognitive Modeling, 2007. (doi:10.1.1.75.4342)
  • Samuel Wintermute and John E. Laird. Predicate Projection in a Bimodal Spatial Reasoning System. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pages 1572–1577, 2007.
  • Sam Wintermute, Joseph Xu, and James Irizarry. SORTS: Integrating SOAR with a Real-Time Strategy Game. Technical Report CCA-TR-2007-01, 2007.
  • Sam Wintermute, Joseph Xu, and John E. Laird. SORTS: A Human-Level Approach to Real-Time Strategy AI. In Proceedings of the Third Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE-07), pages 55–60, 2007.
  • Paolo Gunetti and Haydn Thompson. A Soar-based planning agent for gas-turbine engine control and health management. In Proceedings of the 17th IFAC World Congress, 2008. (doi:10.3182/20080706-5-KR-1001.1012)
  • P. Gunetti, A. Mills, and H. Thompson. A distributed intelligent agent architecture for gas-turbine engine health management. In 46th AIAA Aerospace Sciences Meeting and Exhibit, number January, 2008.
  • John E. Laird. Extending the Soar cognitive architecture. Frontiers in Artificial Intelligence and Applications, 171:224–235, 2008. (doi:/10.1016/j.cogsys.2006.07.004)
  • Robert P. Marinier and John E. Laird. Emotion-Driven Reinforcement Learning. In Proceedings of the 30th Annual Conference of the Cognitive Science Society, pages 115–120, 2008.
  • B. Stensrud, G. Taylor, J. Montefusco, B. Schricker, and Jeffrey Maddox. An Intelligent User Interface for Enhancing Computer Generated Forces. Proceedings of the 2008 Fall Simulation Interoperability Workshop (SIW), 2008.
  • Samuel Wintermute and John E. Laird. Bimodal Spatial Reasoning with Continuous Motion. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 2008.
  • Samuel Wintermute and Scott D. Lathrop. AI and Mental Imagery. In Papers from the 2008 AAAI Fall Symposium Series: Naturally Inspired AI, 2008.
  • Nate Derbinsky and John E. Laird. Efficiently implementing episodic memory. In International Conference on Case-Based Reasoning, 2009. (doi:10.1007/978-3-642-02998-1_29)
  • Natalie Fridman and Gal A. Kaminka. Comparing human and synthetic group behaviors: A model based on social psychology. In International conference on cognitive modeling, 2009.
  • Nicholas A. Gorski and John E. Laird. Evaluating Evaluations: A Comparative Study of Metrics for Comparing Learning Performances. Technical Report CCA-TR-2009-05, 2009.
  • Randolph M. Jones, Brian S. Stensrud, and Glenn E. Taylor. Knowledge-Rich Intelligent Agents for SOF Training. In Proceedings of the Special Operations Forces Industry Conference (SOFIC), 2009.
  • John E. Laird. Toward Cognitive Robotics. SPIE Defense, Security, and Sensing, 2009. (doi:10.7210/jrsj.17.2)
  • John E. Laird and Nate Derbinsky. A Year of Episodic Memory. In Proceedings of the Workshop on Grand Challenges for Reasoning from Experiences, IJCAI, pages 7–10, 2009.
  • John E. Laird, Robert E. Wray, Robert P. Marinier, and Pat Langley. Claims and Challenges in Evaluating Human-Level Intelligent Systems. In Proceedings of the Second Conference on Artificial General Intelligence, 2009. (doi:10.2991/agi.2009.17)
  • Deryle Lonsdale, Jeremiah Mcghee, Ross Hendrickson, Carl Christensen, and Jeremiah McChee. Incremental processing and resource usage. In Proceedings of the 9th International Conference on Cognitive Modelling (ICCM), 2009.
  • Robert P. Marinier, John E. Laird, and Richard L. Lewis. A computational unification of cognitive behavior and emotion. Cognitive Systems Research, 10(1):48–69, 2009. (doi:10.1016/j.cogsys.2008.03.004)
  • Mohan Shiwali and John E. Laird. Learning to play Mario. Tech. Rep. CCA-TR-2009-03, 2009.
  • Samuel Wintermute. An Overview of Spatial Processing in Soar/SVS Investigator. Technical Report CCA-TR-2009-01, 2009.
  • Samuel Wintermute. Integrating Action and Reasoning through Simulation. In Proceedings of the 2nd Conference on Artificial General Intelligence, 2009. (doi:10.2991/agi.2009.24)
  • Samuel Wintermute. Representing Problems (and Plans) Using Imagery. In Papers from the 2009 AAAI Fall Symposium Series: Multi-Representational Architectures for Human-Level Intelligence, 2009.
  • Samuel Wintermute and John E. Laird. Imagery as compensation for an imperfect abstract problem representation. In Proceedings of the 31st Annual Conference of the Cognitive Science Society, 2009.
  • Joseph Xu, Sam Wintermute, Yongjia Wang, and John Laird. Transferring Learned Search Heuristics. TECHNICAL REPORT CCA-TR-2009-04, 2009.
  • Paolo Gunetti, Tony Dodd, and Haydn Thompson. A software architecture for Autonomous UAV Mission Management and Control. In AIAA infotech@aerospace 2010, 2010.
  • Samuel Wintermute. Abstraction, Imagery and Control in Cognitive Architecture. PhD Thesis, 2010.
  • Samuel Wintermute. Using imagery to simplify perceptual abstraction in reinforcement learning agents. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.
  • Joseph Z. Xu and John E. Laird. Instance-Based Online Learning of Deterministic Relational Action Models. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.
  • Nate Derbinsky and Georg Essl. Cognitive Architecture in Mobile Music Interactions. In Proceedings of the International Conference on New Interfaces for Musical Expression, pages 104–107, 2011.
  • N. A. Gorski and J. E. Laird. Learning to use episodic memory. Cognitive Systems Research, 12(2):144–153, 2011.
  • Scott D. Lathrop, Samuel Wintermute, and John E. Laird. Exploring the functional advantages of spatial and visual cognition from an architectural perspective. Topics in Cognitive Science, 3(4):796–818, 2011. (doi:10.1111/j.1756-8765.2010.01130.x)
  • Shiwali Mohan and John E. Laird. An Object-Oriented Approach to Reinforcement Learning in an Action Game. In Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pages 164–169, 2011.
  • Nate Derbinsky and Georg Essl. Exploring Reinforcement Learning for Mobile Percussive Collaboration. In Proceedings of the 12th International Conference on New Interfaces for Musical Expression, 2012. (doi:10.1080/09298215.2011.576318)
  • Nate Derbinsky and John E. Laird. Competence-Preserving Retention of Learned Knowledge in Soar's Working and Procedural Memories. In Proceedings of the 11th International Conference on Cognitive Modeling, 2012.
  • Nate Derbinsky and John E Laird. Computationally Efficient Forgetting via Base-Level Activation. In Proceedings of the 11th International Conference on Cognitive Modeling, pages 109–110, 2012.
  • Nate Derbinsky, Justin Li, and John E. Laird. A Multi-Domain Evaluation of Scaling in a General Episodic Memory. In Proceedings of AAAI'12, pages 193–199, 2012.
  • John E. Laird. The Soar Cognitive Architecture. AISB Quarterly, 171(134):224–235, 2012. (doi:catalog/item/default.asp?ttype=2&tid=12784)
  • Samuel Wintermute. Imagery in cognitive architecture: Representation and control at multiple levels of abstraction. Cognitive Systems Research, 19-20:1–29, 2012. (doi:10.1016/j.cogsys.2012.02.001)
  • Paolo Gunetti, Tony Dodd, and Haydn Thompson. Simulation of a Soar-Based Autonomous Mission Management System for Unmanned Aircraft. Journal of Aerospace Information Systems, 10(2):53–70, 2013. (doi:10.2514/1.53282)
  • John E. Laird. Reflections on Abstractions for General Artificial Intelligence. In 2013 AAAI Fall Symposium Series, pages 47–49, 2013.
  • Justin Li and John Laird. Preemptive Strategies for Overcoming the Forgetting of Goals. In Proceedings of the 27th AAAI conference on artificial intelligence, pages 1234–1240, 2013. (doi:10.2991/978-94-6239-027-0)
  • Justin Li and John E. Laird. The Computational Problem of Prospective Memory Retrieval. In Proceedings of the 12th International Conference on Cognitive Modeling, 2013.
  • A. Stenger, B. Fernando, and M. Heni. Autonomous Mission Planning for UAVs: A Cognitive Approach. Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, 2013.
  • Joseph Z. Xu and John E. Laird. Learning Integrated Symbolic and Continuous Action Models for Continuous Domains. In Proceedings of the 27th AAAI Conference on Artificial Intelligence, 2013.
  • James R. Kirk and John E. Laird. Interactive Task Learning for Simple Games. Advances in Cognitive Systems, 3:13–30, 2014.
  • J. E. Laird and S. Mohan. A case study of knowledge integration across multiple memories in Soar. Biologically Inspired Cognitive Architectures, 8:93–99, 2014.
  • Shiwali Mohan and John E. Laird. Learning Goal-Oriented Hierarchical Tasks from Situated Interactive Instruction. AAAI Conference on Artificial Intelligence, pages 387–394, 2014.
  • Justin Li and John Laird. Spontaneous Retrieval from Long-Term Memory for a Cognitive Architecture. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.
  • Shiwali Mohan. From Verbs to Tasks: An Integrated Account of Learning Tasks from Situated Interactive Instruction. PhD Thesis, 2015.
  • Shiwali Mohan, James Kirk, Aaron Mininger, and John Laird. Agent Requirements for Effective and Efficient Task-Oriented Dialog. In Artificial Intelligence for Human-Robot Interaction Papers from the AAAI 2015 Fall Symposium, pages 94–99, 2015.
  • Steven J. Jones, Arthur R. Wandzel, and John E. Laird. Efficient Computation of Spreading Activation Using Lazy Evaluation. In Proceedings of the International Conference on Cognitive Modeling, 2016.
  • James R. Kirk and John E. Laird. Learning General and Efficient Representations of Novel Games Through Interactive Instruction. Advances in Cognitive Systems, 4, 2016.
  • Justin Li, Steven Jones, Shiwali Mohan, and Nate Derbinsky. Architectural Mechanisms for Mitigating Uncertainty during Long-Term Declarative Knowledge Access. Advances in Cognitive Systems, 4:1–12, 2016.
  • Peter Lindes and John E Laird. Toward Integrating Cognitive Linguistics and Cognitive Language Processing. 2016.
  • Aaron Mininger and John Laird. Interactively Learning Strategies for Handling References to Unseen or Unknown Objects. Advances in Cognitive Systems, 5, 2016.
  • Shiwali Mohan, James Kirk, and John Laird. A Computational Model for Situated Task Learning with Interactive Instruction. arXiv preprint arXiv:1604.06849, 2016.