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Abstract—In this paper we present a method for robots to do 
visual place recognition and categorization. The robot learns 
from experience and then recognizes previously observed 
places in known environments and categorizes previously 
unseen places in new environments. This system has been 
practically tested with a novel dataset developed by us to 
validate the theoretical results of the proposed system. A 
Histogram of Oriented Uniform Patters (HOUP) descriptor 
has been used to represent an image and then appropriate 
classifiers have been used to perform the classification tasks. It 
is shown that our method not only performs well on our 
dataset but also on existing datasets. A major contribution of 
this work is that this is the first real time implementation of a 
HOUP descriptor on two mobile robot platforms.  Finally we 
built a novel dataset of seventeen indoor places for doing place 
recognition and validated our method in real time on this 
dataset. 

Keywords-place recognition; place categorization; HOUP; 
local binary patterns, support vector machines 

I.  INTRODUCTION 
Autonomous Mobile Robots have been studied by a large 

number of researchers. One of the most important 
capabilities is Robot Localization. Robot Localization refers 
to answering the question for the robot, “Where am I?” 
Localization in general has two aspects qualitative and 
quantitative. The qualitative aspect of localization refers to 
knowing the place where the robot is present. For example – 
In a building, the robot should know that it is on a particular 
floor in room number 12 (which may be a seminar room, lab, 
conference room, etc.). The quantitative aspect of 
Localization allows the robot to have the knowledge about 
its coordinates in the particular room with a standard 
reference point. Quantitative localization is addressed by 
methods like visual odometry and LIDAR based approaches 
[1], [2]. 

 In this paper our focus is to deal with the qualitative 
aspect of Localization. We focus on Place Recognition and 
Place Categorization. Place Recognition gives the robot the 
ability to know that it has been at a particular place before 
whereas Place Categorization allows the robot to know that it 
has been to a similar environment before. We implemented a 
Histogram of Oriented Uniform Patterns (HOUP) Descriptor 
as proposed by Fazl-Ersi and Tsotsos [3] and deployed the 
algorithm on two mobile robots – Virtual Me and Pioneer as 
shown in Figure 1. The HOUP descriptor is generated to 
perform the recognition and categorization tasks. For a given 

image sub block a HOUP descriptor is produced by passing 
the sub block through a Gabor Filter oriented in different 
orientations. The output of the Gabor filter is then used to 
generate Local Binary Patterns similar to the ones proposed 
by Ojala [4]. These patterns reflect the textural features in 
the image (curved edges, flat regions, dark spots, bright 
spots, etc.).  We then use Principal Component Analysis to 
reduce the dimensionality of the descriptor. Finally 
classifiers like Support Vector Machines [5] and K-nearest 
neighbors are used for finding the type of place the image is 
of. We developed a dataset of seventeen different indoor 
places by moving the robots manually. The robot was made 
to traverse through all the places initially once and the robot 
was successfully able to recognize those places with a high 
accuracy. 

 

Figure 1.  Pioneer (left) and Virtual Me (right) used for place recognition. 

II. RELEVANT  WORK 
Earlier researchers used Laser range finders [6], [7], [8], 

[9], [10] and sonar based techniques [11]. Although such 
techniques have been widely used in the past and have 
displayed high performance, yet it has some drawbacks. It is 
often restricted to recognizing places with a similar 
geometric structure. If such a recognition system is asked to 
distinguish between places with similar geometric structure 
and a different appearance, it fails to do so. Ulrich and 
Nourbakhsh [12] developed an appearance based place 
recognition system for Localization by using color 
histograms, nearest neighbor matching and a simple voting 
scheme. They validated their system on 4 different places. 
Recently Johns and Yang [13] used RANSAC with 2D 
geometric cliques for learning the expected pair wise 
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geometries for each place. They account for the underlying 
scene structure and possible view points by doing so.  

Place Recognition for outdoor environments has recently 
been researched [14], [15], [16] and [17]. Chen et al. [15] 
used 21 layered Convolutional neural networks for doing 
place recognition. At the expense of accuracy they traded 
computational cost. Lee et al. [16] used line features to do 
place recognition in challenging outdoor environments. They 
leveraged the fact that man-made environments have lines 
most of the time and these lines are more robust to 
illumination, viewing direction or occlusions. Indoor place 
recognition has been done by Zender et al. [6] and Pronobis 
et al [18]. Another interesting work is that of Paul et al. [19] 
where they describe a probabilistic framework for 
appearance based navigation and mapping. Some other 
probabilistic appearance based methods include [20], [21] 
and [22]. 

Several landmark based approaches have been proposed. 
Such approaches suggest using local image features to 
represent and classify the scenes. Local Image features 
characterize limited areas of the image and they often 
provide more robustness against common image variations. 
Dudek and Jugessur [23] used visual features in the 
appearance domain to classify an object or a location. 
Similar to them we also focus on Qualitative localization of a 
place. One of the most famous descriptors being used for 
describing the local features in an image is the Scale 
Invariant Feature Transform (SIFT) of Lowe (2004) [24]. 
Lazebnik et al. (2006) [25] describes a method for 
recognizing scene categories based on approximate global 
geometric correspondence. Other local features based 
approaches include the works of Bay et al. [26] and Dallal 
and Triggs [27]. One of the famous context based 
approaches is that of computing the gist of a scene proposed 
by Oliva and Torralba [28], [29] and Oliva [30]. Oliva 
constructs the global scene representation of an image to 
build global features from the scene rather than focusing on 
local features. In this paper we use a similar technique 
proposed by Fazl-Ersi and Tsotsos [3] and apply it for the 
task of Place Recognition and validate its performance on 
our generated dataset. 

III. HOUP DESCRIPTOR 
Histogram of Oriented Uniform Patterns (HOUP) is a 

distribution based descriptor as suggested by the name 
itself. The initial image representation that is used to build 
the histogram describes the frequency content of the image; 
it can also be viewed as a descriptor based on spatial 
frequency. Figure 2 gives a general overview of the process 
of generating a HOUP descriptor for an image. 

 
 
 
 
 
 

Figure 2.  General Pipeline of a HOUP descriptor. 

A. The Gabor Filter 
Among different oriented filters, Gabor filters have 

received considerable attention. It has also been shown that 
these filters possess optimal localization properties in both 
spatial and frequency domain, and thus are well suited for 
texture analysis and encoding. Related work has been done 
by Torralba et al. [31] for encoding images for developing a 
context based Vision System for place and Object 
Recognition. In this paper too we use a similar method of 
initially encoding the image produced by passing it through 
a Gabor Filter. 

Gabor Filters have been widely used for texture analysis, 
feature extraction, disparity estimation, etc. These filters are 
special types of filters which allow only a certain band of 
frequencies to pass through and reject the others. The filter 
can be mathematically represented as: 
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• 	 , theta is the orientation of the normal to the 
parallel stripes of a Gabor function.  

• � , lambda represents the wavelength of the 
sinusoidal factors 

• 
, phi is the phase offset 
• �, gamma is the spatial aspect ratio 
• �, sigma is the standard deviation of the Gaussian 

envelope 
• �  and �  are the coordinates of the pixels in the 

image 
After generating the Gabor kernel we convolve the 

image with the kernel and get the filtered image. 
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Here &'��
 is the output of the convolved image with 
the with the Gabor filter �'�� � ��
 at a specific frequency 
and orientation. ����
 is the input image to the Gabor filter. 
For computing the intermediate stage of the HOUP 
descriptor for an image sub block, we convolve the image 
with a Gabor Filter as described. Gabor Filters are generated 
at 6 different orientations and each orientation’s output is 
then passed to a local binary pattern [4]. Detailed analysis is 
performed on Gabor coefficients and their joint distribution 
using local binary patterns. This is to aggregate encoded 
information at different locations into a low dimension 
image representation. The suggested aggregation method 
based on the uniform patterns boosts the discriminative 
power and generalizability of the representations; it 
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produces scene representations with lower dimensions than 
most of the existing methods.  

The selection of the parameters of the Gabor filters is an 
important task which needs to be addressed. There does not 
exist any clever method for selection of the parameters of 
the Gabor filter. The parameter values depend on the dataset 
which is being used so there are no generalized set of values 
for the Gabor filter parameters which produce the best 
possible performance. For this paper we used a Gabor filter 
tuned to 6 different orientations giving us � = n�/6 where $ � +�,���-�. and /. 
 is set to 0. The remaining parameters � , �  and �  have been chosen by searching the entire 3D 
space and set to the ones that give the best performance. 

B. Local Binary Patterns  
Local Binary Patterns were initially proposed by Ojala 

[4] for gray-scale texture classification. The method is based 
on recognizing that certain local binary patterns termed as 
‘uniform’ are fundamental properties of local image texture, 
and their occurrence histogram proves to be a very powerful 
texture feature. Ojala derived a generalized gray-scale and 
rotation invariant operator presentation that allows for 
detecting the ‘uniform’ patterns for any quantization of the 
angular space and for any spatial resolution and presents a 
method for multi-resolution analysis. The approach of Ojala 
[4] is very robust in terms of gray-scale variations, since the 
operator by definition is invariant against any monotonic 
transformations of the gray scale. The proposed method of 
local binary patterns is also computationally simple as the 
operator can be implemented with a few operations in a 
small neighborhood and a lookup table. The most important 
property of using the local binary patterns (LBPs) is that 
certain LBPs termed as ‘uniform’ represent the fundamental 
properties (edges, corners and bright/dark spots) of the local 
image texture and they help in generating a generalized gray 
scale and rotation invariant operator for detecting these 
‘uniform’ patterns.  

Here we use the LBP of a local image region as follows. 
It’s the same as described by Ojala [4]. 

 0� 1 2�3��4 ���5
� 3��6 ���5
� 7�� 3��896 � �5
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T is the texture in a local neighborhood of a 

monochrome image as the joint distribution of gray levels of =��= > ,
 image pixels. �5 is the central image pixel. In this 
paper we use = � ? . Now for each sign 3��@ ���5
  in 
equation (4), the terms are multiplied by a binomial factor of �@ to transform each pixel into a unique number as follows:  
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In this paper we set = � ?  as we consider a 3x3 
neighborhood for a pixel. Equation (6) is computed for each 
pixel in a neighborhood region of 3 by 3 for an image, each 
neighborhood is thresholded at the gray value of the center 
pixel and converted into a binary pattern. The total number 
of binary pattern that can be generated with = � ? is 256. A 
Histogram of local binary patterns is generated to count the 
total number of occurrence of each binary pattern in the 
image. Out of the 256 patterns only 58 patterns are uniform 
as shown in Figure 3. A uniform binary pattern is one in 
which the total number of transitions from 0 to 1 or 1 to 0 is 
at most 2. These uniform patterns represent the fundamental 
properties in an image. The pattern #0 (00000000) detects 
bright spots, patterns #4 (00000100), #8 (00001000), #12 
(00001100) detects edges and so on.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Highlighted numbers represent the decimal representation of the 
58 uniform patterns out of the total 256 binary patterns in an LBP. 

 We introduce a 59th dimension to represent the non-
uniform patterns; this is the sum of all non-uniform patterns. 
So in total we have 59 dimensional image representations for 
an image sub block. We then consider computing the 
Histogram of Oriented Uniform Patterns for each output of 
the oriented band pass filter. As we have 6 different 
orientations for the Gabor filter, we get 59 * 6 = 354 
dimensional representation for an image sub block. This 
dimensionality is then reduced by selecting the first N 
principal components in such a way that the sum of chosen 
eigenvalues of the principal components accounts for more 
than 95% of the sum of all components. In our experiments 
the value of N is set to be 70 as it accounts for more than 
95% of the sum of eigenvalues in most cases. So we select 
the first 70 principal components to act as representations for 
an image. Hence we have a 70 dimensional representation of 
an image sub block which we term as the “HOUP” 
descriptor for the image sub block. This is what we call one 
candidate feature for the image. 
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C. Subdivision Scheme  
Here we divide an image to generate different features 

which would provide an informative representation of the 
image. We divide the given image into 1x1, 2x2, 3x3, 4x4 
and 5x5 blocks. So in total we have 55 candidate features. 
Now a HOUP descriptor for each image is computed. It is 
observed that highest accuracy is achieved when using the 
3x3 sub division scheme; we get 9 features each of 70 
dimensionality. So the dimensionality for each image we 
generate is 70*9 = 630. So we use 630 numbers to represent 
an image. We do this for all images to generate a training 
dataset. On the training dataset we use appropriate 
classifiers to classify the image into its respective place 
category. For place recognition we use a 1 nearest neighbor 
classifier and for place categorization we use the support 
vector machine classifier. We use the LIBSVM tool 
proposed by [5] in this paper.  

D. Feature Selection  
Some previous approaches have used feature selection 

methodology to select the most informative features. Fazl-
Ersi and Tsotsos [3] used the feature selection algorithm 
based on Kernel Alignment proposed by Christianini et al. 
[32]. It should be noted that we do not use any feature 
selection algorithm to select informative features because 
the computational cost of using these methods is not 
practically realizable for real time application in the field of 
robotics. We implemented feature selection and it was 
observed that for place recognition we achieved only 3% 
improvement in accuracy which was not a substantial 
increase also it drastically increased the computational time 
of our algorithm. 

 

IV. OUR DATASET 
Several datasets exist for indoor visual place recognition 

such as USC dataset [33] developed by Siagian and Itti. Most 
of these datasets are limited to the variability they capture in 
terms of the number of places. The KTH IDOL dataset [18] 
consists of only 5 indoor places captured by 2 robots under 
varying illuminations conditions. Another interesting dataset 
built by Quattoni and Torralba [34] containing 67 scenes was 
built. However on this dataset current algorithms perform 
poorly making this dataset impractical for real world robotics 
applications as it would not be practical to have a robot 
navigate 67 different places. We in this paper developed a 
real time dataset of 17 different places. The dataset was built 
at two different locations under varying illumination 
conditions during day and night using two different robots. 
The dataset built used a Point Grey Bumblebee camera. The 
dataset developed is partly a binocular dataset which has 2 
image representations of a scene – the left and right image. 

A. Experimental Setup 
Here we describe the experimental scenario and the data 

acquisition devices employed for the evaluation of our visual 
place recognition system. We tested it on two mobile robot 

platforms, “Pioneer” and “Virtual ME”. The robot platforms 
used for data acquisition are shown in Figure 1. This dataset 
has been generated keeping in mind to have a dataset that 
can be publically used by researchers. It is a challenging 
novel partly stereo dataset acquired in two different lighting 
conditions. 11 of 17 places have stereo images captured. 
Other 6 have monocular images. We only use monocular 
images in this paper. Figure 4 and 5 show the different places 
captured in the dataset. In total we have 4 image sequences 
for the seventeen places captured at day and night. Each of 
the image sequence has approx. 4000-4200 images with 100-
500 images belonging to each place. Each of the image 
sequences has minor variations in viewpoints for each scene.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Eleven Places included in the dataset developed at York 

University, Canada. 

Some of the places are treated as a different entity while 
some are separated by room dividers or curtains to mark off 
different parts of a big lab. Arena, Workplace, Ash Room 
and the living Room are different places of one big lab. 
Lab2, Plant Room and Professor Room are in the second big 
lab having the three different places as described above. 
Lounge, Seminar Room and Wash Room are three separate 
entities used to capture images and generate the dataset. 
Corridor is a place that essentially links the various places 
(labs, lounge, washrooms, seminar rooms, etc.) together. 
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Example picture of the eleven places can be seen in Figure 
4. 

As already mentioned the visual dataset was developed 
using the two robot platforms under two different lighting 
conditions day (when the natural sun light dominates) and 
night (when the rooms light has a significant effect on the 
place). The image acquisition was spread over a period of 
two weeks to generate the dataset. In this way we captured 
the visual variability that might have occurred.  
 

 

 

 

 

 

 

 

Figure 5.  Six places dataset built at the Coast Capri Hotel, Kelowna, 
British Columbia 

B. Robot Platforms 
Both robots the White robot ‘Virtual Me’ and the red 

colored robot ‘Pioneer’ shown in Figure 1 are equipped 
with a directed perception pan tilt unit and a point grey 
stereo camera bumble bee. As can be seen in Figure 1, the 
cameras are mounted at different heights. On Pioneer the 
camera is 88 centimeters above the ground level, whereas 
on Virtual me it is 117 centimeters above the floor. All 
images were acquired with a resolution of 640 x 480 pixels, 
with the camera fixed at an upright position. The camera 
had the freedom to rotate on the spot for Pioneer robot; for 
virtual me the robot rotated on the spot which gave an 
indirect effect of having the camera rotate on the spot. The 
robot (virtual me) and pioneer’s camera rotated in order to 
look around during the acquisition process. 

We followed the same procedure during image 
acquisition with both robot platforms. The robots were 
manually driven (speed approximately 0.5 meters per 
second) through all the eleven places while continuously 
acquiring images at the rate of approximately 3 frames per 
second. For the different illumination conditions (day and 
night), the acquisition procedure was performed twice; 
resulting in two image sequences acquired one after the 
other giving a total of 4 sequences across a span of two 
weeks. Example images can be seen in Figure 4 and 5. Due 
to manual control the path of the robot was slightly different 
for every sequence. The process of labeling the places was 
done depending on a key press on the keyboard; a specific 
key on the keyboard was pressed depending on the place the 
robot was in at that particular time. Each image was 

accordingly labeled as belonging to one of the seventeen 
different places based on the position from where it was 
taken. For example the robot while standing on the exit of 
‘Work place’ views the living room is labeled as ‘Work 
place’ because it took the image while it was in the place – 
‘Work place’. Similarly for Robot standing in ‘Dining 
Room’ looking at the ‘Conference Room’ is labeled as 
‘Dining Room’ because it is physically in the place – 
‘Dining Room’. In such situation we get some miss-
classifications when robot is transitioning from one place to 
other.   

 

C. Experimental Results 
We conducted four sets of experiments in order to 

evaluate the performance of our system and test its 
robustness to different types of variations. We present the 
results in Table 1 and 2. We started with a set of reference 
experiments evaluating our method under stable 
illumination conditions (I). Next we increased the difficulty 
of the problem and tested the robustness of the system to 
changing illumination conditions (II) as well as to other 
variations that may occur in real-world environments. Next 
we moved on to see whether a model trained on images 
acquired from one device (robot) can be useful for solving 
the localization / recognition problems with a different 
device (robot) in similar illumination condition (III). Finally 
we modeled a system that would use images trained on one 
device under a specific lighting condition and test on a 
different device under different lighting condition (IV). We 
obtain encouraging results for all the 4 types of experiments 
conducted as can be seen in the next section. We conducted 
all 4 experiments for eleven places and conduct experiments 
(I) and (II) only for the seventeen places. 

For the different image sequences different number of 
images for each place were present in all image sequences 
of the two robots in two lighting conditions. We built 
HOUP descriptors for an image sub-block. A sub-division 
scheme of 3x3 was used giving rise to 9*70 = 630 
dimensional representation of each image. The classification 
algorithm being used is here is the 1 nearest neighbor 
classifier with the Spearman distance metric. For all the four 
types of experiments mentioned above same Gabor filter 
parameters and sub division scheme was used. We did not 
employ any feature selection method due to its practical 
infeasibility in our work for mobile robot localization.  

We consider 4 different types of experiments conducted. 
Following types of experiments were conducted: 

I. Same Robot Same Lighting Conditions 
II. Same Robot Different Lighting Conditions 
III. Different Robot Same Lighting Conditions 
IV. Different Robot Different Lighting Conditions 

     Table 1 shows the results of our algorithm on eleven 
places in our dataset for the two different robots. Table 2 
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shows the results of our method on seventeen places for a 
single robot under different illumination conditions. 
 

TABLE I.  PERFORMANCE OF OUR METHOD ON OUR DATASET FOR                 
.                                  VIRTUAL ME ROBOT FOR SEVENTEEN PLACES 

# Training 
Set 

Testing Set Lighting 
Conditions 

Accuracy 
(%) 

I Virtual Me Virtual Me Same 98.34  
II Virtual Me Virtual Me Different 90.22  

 

TABLE II.  PERFORMANCE OF OUR METHOD ON OUR DATASET FOR 
THE TWO ROBOTS FOR ELEVEN PLACES 

# Training 
Set 

Testing Set Lighting 
Conditions 

Accuracy 
(%) 

I Pioneer Pioneer Same 98 
 VirtualMe VirtualMe Same 98 
II Pioneer Pioneer Different 93 
 VirtualMe VirtualMe Different 93 
III Pioneer VirtualMe Same 92 
 VirtualMe Pioneer Same 92 
IV Pioneer VirtualMe Different 82 
 VirtualMe Pioneer Different 85 

V. COMPARISON TO EXISTING APPROACHES AND 
DATASETS 

Two sets of experiments were performed one each for 
place recognition and place categorization to compare our 
approach with existing methods.  

A. The KTH IDOL Dataset – for Place Recognition 
This dataset is well known for Topological Place 

Recognition. It was created by Pronobis et al. [18]. The 
purpose of this experiment is different from the previous 
one; this one is a recognition task not a categorization one. 
However this is also challenging as it provides images of 
different places under varying lighting conditions. This 
dataset is built in an office environment and has images 
belonging to 5 places – “kitchen, corridor, one person 
office, two person office and a printing area”. The images 
have been captured by 2 robots Minnie and Dumbo under 3 
different lighting conditions – night, sunny and cloudy. 

TABLE III.  PERFORMACE OF OUR METHOD ON THE KTH IDOL 
DATASET 

 
# Train Test Lighting Performance    
    [35] A [18] B [3] C Ours 
1 Minnie Minnie Same 95.35 95.51 96.61 95.38 
 Dumbo Dumbo Same 97.62 97.26 98.24 97.22 
2 Minnie Minnie Diff. 90.17 71.90 92.01 85 
 Dumbo Dumbo Diff. 94.98 80.55 95.76 88 
3 Dumbo Minnie Same 77.78 66.63 80.05 72.46 
 Minnie Dumbo Same 72.44 62.20 75.43 75.48 

A) Wu & Rehg, 2011 [35], B)Pronobis et al., 2006 [18], C)Fazl-Ersi &  Tsotsos, 2012 [3]    

  

   Table 3 lists the accuracy of our proposed methodology in 
comparison to others. In the paper by Fazl-Ersi and Tsotsos, 
2012 [3], for experiment 1, 2 and 3 their feature selection 

algorithm selected 9, 13 and 23 features. The number of 
selected features increased with the difficulty of the 
experiments with maximum being for the third one.  

Reasons for the lower accuracies than the best available 
Fazl-Ersi and Tsotsos [3]: (1) The accuracies reported above 
are from 9 features by using the 3x3 sub division scheme (2) 
We have used only 9 features to be used for all the three 
type of experiments. It can be seen that we get comparable 
results to the ones reported by Fazl-Ersi and Tsotsos [3]. We 
are off on average by around 4 %. (3) Feature selection has 
not been used because our place recognition system has to 
be used on an actual mobile robot.  

Feature selection was implemented for some experiments 
and it did increase the accuracies by approximately 3-4%. 
But realizing the practical infeasibility of the feature 
selection algorithm, it was decided to not use it.  

B. The UIUC Dataset – for Place Categorization 
The UIUC dataset has been developed by Oliva and 

Torralba [28], Fei-Fei and Perona [36] and Lazebnik et al. 
[25]. This is one of the most commonly used databases for 
scene recognition in the field of Computer Vision. The 
dataset consist of 15 scene categories – “Suburb, Living 
Room, Forest, Mountain, Open Country, Street, Store, 
Bedroom, Industrial, Highway, Coast, Inside City, Office, 
Tall Building and Kitchen.” Each class contains 210 – 410 
images.  

The standard procedure for experimenting with this 
dataset is randomly selecting 100 images for training and 
rest for testing. We here use the same standard protocol used 
for the dataset; we use 100 images selected from each 
category for training and use the remaining images in the 
dataset for testing. The procedure described in Fazl-Ersi [3] 
uses the feature selection algorithm to select the most 
informative features; they mention that on an average 43 
features are selected from the pool of the 165 candidate 
features. This leads to 43 * 70 = 3010 dimensional 
representations to describe a single image. Fazl-Ersi 
compares the accuracy of his method with other state of the 
art methods and performs better than them. In his paper [3], 
he mentions that feature selection selects almost all 1x1 and 
2x2 grids whereas 48% and 23% of the 3x3 and 4x4 blocks 
are selected. 

All images have been resized to 256x256 as most of the 
images are closer to this number. We here use the 3x3 = 9 
features to represent an image which leads to 9 * 70 = 630 
dimensional representation for an image. The LIBSVM tool 
[5] is used as the classification algorithm for classifying the 
images. The LIBSVM tool with a variant of the OSS kernel 
[37] is used as the underlying kernel measure similar to that 
in [3]. We here use the LIBSVM tool [5] with the OSS+ 

kernel to be used as a predefined kernel with the LIBSVM 
algorithm.  

One of the most important tasks involved while using a 
classifier is to have an appropriate method to normalize the 
data depending on the classifier used. For example when 
using the SVM algorithm with a radial basis (rbf) kernel, the 
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performance of the system would be poor unless the data is 
appropriately normalized. Similarly while using the 
LIBSVM tool with the OSS+ kernel, the data has been 
scaled to be between 0 and 1. This is a crucial part and 
boosts the accuracy by 10 to 15 per cent as opposed to using 
it without scaling. Additional benefits and the difference 
that scaling can make for a building a successful system can 
be found in [38] where in the author mentions about various 
examples where scaling the data shoots up the accuracy by 
even 30%. 

We achieve an accuracy of 72% by using the 9 features 
with the linear kernel; After employing the OSS+ kernel, we 
get an accuracy of 75.33% as opposed to the 86% accuracy 
achieved by Fazl-Ersi [3]. We are off by 10 % for visual 
place categorization. Theoretically it is possible to get the 
accuracy as got by Fazl-Ersi and Tsotsos [3] by 
implementing the feature selection algorithm, but to obtain a 
similar accuracy in real time on a robot platform would 
require faster processors.  

Reasons for low accuracy include: (1) we here have not 
implemented feature selection because of its computational 
inefficacy (2) we have a very compact representation of a 
single image with 9 features as opposed to the 43 features 
being used by Fazl-Ersi [3]. 

It is expected that after implementing the above points, 
the accuracy should be comparable to that stated in the paper 
[3]. However we argue about the infeasibility of having the 
feature selection algorithm to be implemented as it takes a 
large amount of time for finding the informative features. 

VI. IMPLEMENTATION 
We initially used Matlab to implement the algorithm 

being used in the paper. For deploying the software on the 
robots the matlab code was converted to C++ for efficient 
execution of our method. We did not achieve any latency 
while the robot was doing place recognition. A video of 
Virtual Me doing Place recognition is available at the link. 

https://www.youtube.com/watch?v=k6E12Yp17X8  

VII. CONCLUSION 
In this paper we presented a practical real time vision 

based place recognition system for qualitative localization of 
a mobile robot. We started out by describing the HOUP 
descriptor and validated its efficiency through a series of 
experiments in the subsequent sections. Appropriate 
classifiers were chosen and used for the place recognition 
and categorization. We demonstrated for the first time a real 
time implementation of the HOUP descriptor on two mobile 
robot platforms. Another contribution of this paper is the 
development of a novel dataset for indoor place recognition. 

Future work would include at aiming to integrate this 
qualitative localization approach with the quantitative 
localization using techniques like visual odometry for the 
robot to exactly know where exactly in a particular place the 
robot is in. An interesting modification to the presented 
approach would be using a simple Convolutional Neural 

Network with a layer of Local Binary Patterns to come up 
with a potentially better feature representation of an image. 
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