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1. Introduction 3. Simulation Results (cont.)
%,
Which region in the brain represents unique hues is a matter of debate among color vision researchers [1, 2]. We introduce a hierarchical 9‘@% o
model inspired by neural mechanisms in the visual system for local hue representation and with computational simulations suggest that —_— mV4 >, Y ~
neurons in V4 and beyond have the capacity to encode unique hues. Our hierarchical framework: — Multplicative
1. Builds a network of single-opponent and hue selective neurons Single-opponent = ——
2. Unlike [3, 4], models neurons in each of LGN, V1, V2, and V4 mv2 o o
3. Explicitly reveals how the contributions of each visual cortical area participating in the process can lead to a hue representation = LGN
4. Achieves local hue encoding through gradually increasing nonlinearities in terms of cone inputs as observed by [5] 190° 350° single-opponen
multiplicatively
] o ) ] ] ] 210 330° I mi)/%ulated
** In what follows, we will use the prefix “m” to represent model neurons. For example, mV1 represents a neuron modeling biological V1 cells. —
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2. Network Architecture 0 10 20 30 40 50 60 70 80 90 S
. Color bandwidth (deg) Mean Selectivity Peaks. mLGN, mV1 and single-opponent mV2 neurons
Single-opponent ’ Three cluster of neuron patches Tuning Bandwidths. Multiplicative mV2 neurons and single-opponent cluster around cardinal axes directions while multiplicative mV2 and mV4
neuron maps \ found in Monkey V4 (adapted mV2 cells have clearly separate bandwidth distributions, similar to cells have mean peaks both close to cardinal and intermediate hue
' ' from [11]) observations of Kiper et al. [13] for linear and nonlinear neurons. directions.
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Monkey V4 [11] (figure above). Each mode g
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Vodel L va A model cluster in V4 Single-opponent Vs. Multiplicative mV2 cells Contributions to mV4 Distances to Unique Hue Angles reported by Miyahara [14]. The plot
odel Layer : e e . . . . .
Input Layer | |Model Layer LGN| | Model Layer V1 Model Layer V2 (output) representations. Results show significant contributions of multiplicatively ?hows.that;nlqude. Tue rep(;esentatlon ieve”bl]ﬁc)s in thi(;l\le;arCh\&/’ASPECIflca”V
modulated cells in encoding of hues in intermediate directions. Or unique blue, distances decrease gradually from m o mva.
* Single-opponent mLGN responses are In V2, in addition to single-opponent color cells, we propose multiplicative 4. Color Image Segmentation
obt.am(.ed by linearly combining cone modulations of mV1 L- and M-opponent cell activations with mV1 S- « We employed V4 representations in a color image segmentation task and compared its performance against HSV color features.
?_:]t'vat'f)r;i [6] oved for mLGN cel opponent neuron responses * We randomly picked 12 images from the flowers dataset introduced by Nilsback and Zisserman [15].
* The weights employed for mLGN cells were ol il . . . .
Ed A . We call multiplicatively modulated mV2 neurons as multiplicative cells * For each image, we performed KMeans clustering on HSV and also VA4SV features, the color feature obtained by concatenating V4
set following the findings of Reid et al. [6] Multiplicative modulations increase nonlinearities in cone input [5] and

representations with saturation and value channels.

allow for mixing of color channels * The number of segments for each images was subjectively set according to the overall appearance of the image.

Sinel V1 cell _ Multiplicative modulations rotate the cone-opponent axes to red-green
f'nif'OppZn?nt rTf € ergcelveS and blue-yellow directions [10] 1.01 Em HSv
cearorwart sighat rrom mt N 17,8 Multiplicative modulations decrease mV2 tuning bandwidths - vasv =l
While a half-wave rectification keeps the . ®
tunings of mV1 cells similar to those of mLGN , , . . ©
. * mV4 responses are obtained by linearly combining mV2 activations
neurons as suggested by [9], it makes mV1 , ) ) , , )
. . . with weights determined according to tuning peak distances of mV2 0.6 =
neurons nonlinear in terms of cone inputs _ , 5 2
cells to the desired mV4 neuron tuning peak. [ S £
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3. Simulation Results %
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%’) ’ Color |n.1age segmentathn performa.nce Examples of flower image segmentation with V4SV and HSV features. Flower
= Examples of tunings in our model neurons. Tunings of evaluatlon.. The Ir\tersectlon-over—Unlon (loU) of the image segmentations based on VA4SV features are more accurate with contiguous
@» four single-opponent mv1 and four multipli.cative ) segmentations with respect t.o groundtruth clearly segments compared to HSV-based segmentations. V4SV-based segmentations
Neurons are shown. In each tunine blot. the ancular demonstrate that segmentations banEd on V4sV follow the contours between color regions and appear more robust to variations
. . - .8 PI10L, 8 features outperform HSV segmentations. in saturation and value dimensions.
dimension shows the hue angles in the MacLeod-
) ) Boynton diagram [12], and the radial dimension
® \ . \ Q -.\ represents the response level of the neuron. 5. Conclusion
= a \ \ ; * We introduced a biologically-inspired hierarchical model for hue representation
o o Q¥ i o QY . . . . . g . . . [ . .
= E . > * L &t * Our simulation results indicate that multiplicatively modulated mV?2 cells play a significant role in the representation of hues along
% . - . & "\. F o intermediate directions in the MaclLeod-Boynton space [12]
= L-on X S-on L-on x S-off L-off X S-on L-off x S-off we ot?serveq a gradual decrease in distance of tuning peaks to unique hue angles reported by [1.4] frgm our mLGN cells to mV4 neurons
* Our simulation results demonstrate that responses of our network neurons resemble those of biological color cells
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