Top row from left: Serena Nath, Khatoll Ghauss, Calden Wloka, Paria Mehrani, Sang-Ah Yoo, Professor John Tsotsos, Bao Xin Chen, Brittany Danishevsky, Mahdi Biparva.
Bottom row from left: Xiao Lei Zhang, Toni Kunic, Amir Rasouli, Yulia Kotseruba, Amir Rosenfeld, Markus Solbach, Bir Bikram Dey, Vassil Halatchev.

The Laboratory for Active and Attentive Vision (LAAV) has its roots in the original Computer Vision Laboratory at the University of Toronto founded by John Tsotsos in 1980. In those years it was part of the Artificial Intelligence Group in the Department of Computer Science. There, Tsotsos also founded the Technical Report Series: Research in Biological and Computational Vision (1984 – 1996). In January 2000, Tsotsos moved to York University to take up the Directorship of the Centre for Vision Research and a portion of that lab followed him. The history of the current lab thus goes back to 1980 and includes a significant number of students, post-docs and publications from the pre-York era.

At York, the Laboratory for Active and Attentive Vision is situated within the Department of Computer Science & Engineering. It is also one of over 35 labs in the much larger Centre for Vision Research ( The lab has grown steadily over its history now bursting at the seams in rooms 3001 A, B and 3054 in the Lassonde building. With a rich set of international collaborators, and a well-equipped infrastructure the lab is an exciting research focus for interdisciplinary research on human and primate visual attention and active vision for robotics. Research is ongoing within four themes: Refinements and Expansions of the Selective Tuning Model (ST) for Visual Attention; Human Experimental Investigations on the relationship of ST To Biological Vision and Visually-Guided Robotics with application to Aids for the Physically Disabled.

Our Research

  • Visual Attention

    Little agreement exists on the definition, role and mechanisms of visual attention. As elsewhere in neuroscience, computational modelling has an important role to play by bridging the gap between different investigative methods.

  • Robotics

    Active vision allows for feedback between vision and motor commands, enabling a system some control over the subsequent images it gathers. This can have a major impact on the difficulty and design of a vision algorithm. We study how a mobile visual platform perceives, explores, and interacts with its surroundings, with the goal of developing robust visual systems capable of handling unconstrained environments.

  • Computational Neuroscience

    Computational modeling has an important role to play in neuroscience by being the only technique that can bridge the gap between current investigative methods and provide answers to questions that are beyond their reach.

  • Computational Vision

    Perception is a form of cognition; it is not sufficient to detect sensory stimuli, but one must also understand and interpret that stimuli. We develop computational algorithms which solve visual tasks, as well as computational models which further our understanding of visual processing.

Recent News