Tsotsos Lab
Menu
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Transformers
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Transformers
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact

Calden will present “Spatially Binned ROC: A Comprehensive Saliency Metric” at CVPR 2016


By tech | March 14, 2016 | Category Uncategorized

Paper information:
Authors: Calden Wloka and John Tsotsos
Title: Spatially Binned ROC: A Comprehensive Saliency Metric
Abstract: A recent trend in saliency algorithm development is large-scale benchmarking and algorithm ranking with ground truth provided by datasets of human fixations. In order to accommodate the strong bias humans have toward central fixations, it is common to replace traditional ROC metrics with a shuffled ROC metric which uses randomly sampled fixations from other images in the database as the negative set. However, the shuffled ROC introduces a number of problematic elements, including a fundamental assumption that it is possible to separate visual salience and image spatial arrangement.

We argue that it is more informative to directly measure the effect of spatial bias on algorithm performance rather than try to correct for it. To capture and quantify these known sources of bias, we propose a novel metric for measuring saliency algorithm performance: the spatially binned ROC (spROC). This metric provides direct insight into the spatial biases of a saliency algorithm without sacrificing the intuitive raw performance evaluation of traditional ROC measurements. By quantitatively measuring the bias in saliency algorithms, researchers will be better equipped to select and optimize the most appropriate algorithm for a given task. We use a baseline measure of inherent algorithm bias to show that Adaptive Whitening Saliency (AWS), Attention by Information Maximization (AIM), and Dynamic Visual Attention (DVA) provide the least spatially biased results, suiting them for tasks in which there is no information about the underlying spatial bias of the stimuli, whereas algorithms such as Graph Based Visual Saliency (GBVS) and Context-Aware Saliency (CAS) have a significant inherent central bias.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Recent News


  • Lab members at the VSS conference
  • Congrats to Iuliia Kotseruba on wining the Best Student Paper Award at IV 2024!
  • Lab members at NCRN24
  • Markus Solbach presents “Visuospatial Hypothesize-and-Test Strategies Yield High Accuracy without Training; Their Efficiency Improves with Practice” at RAW 2023
  • Current and former lab members at the VSS conference

University Links

  • Centre for Vision Research
  • Department of Electrical Engineering and Computer Science
  • Lassonde School of Engineering
  • York University
  • Centre for Innovation in Computing at Lassonde
  • Tsotsos Lab on Social Media

    Copyright © 2015 Tsotsos Lab

    Theme created by PWT. Powered by WordPress.org