Tsotsos Lab
Menu
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact

Paria Mehrani presents “A Hierarchical Model for Border Ownership” at CVR 2017


By tech | July 20, 2017 | Category Presentations

Venue: CVR 2017, York University

Abstract:

Experiments on the visual cortex show existence of border ownership (BOS) neurons in V1 and V2. The responses of these neurons not only depend on the orientation of borders, but also on which side of the border the figure is. Neurophysiological studies show that BOS cell responses depend on information outside the classical receptive fields. In other words, contextual information appears to be an important component for border ownership computations. Previous computational models suggested employing feedback modulations for border ownership neurons. The idea relies on the fact that neurons higher in the ventral stream have larger receptive fields and hence, can provide the required contextual information to BOS cells. In this study, we propose an alternative approach for this purpose: we propose that the neurons in the dorsal stream could provide the required contextual information for border ownership computation. In particular, we investigate the possibility of BOS cell modulations from MT neurons. The proposed model is currently under investigation.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Recent News


  • Congrats to Iuliia Kotseruba on wining the Best Student Paper Award at IV 2024!
  • Lab members at NCRN24
  • Markus Solbach presents “Visuospatial Hypothesize-and-Test Strategies Yield High Accuracy without Training; Their Efficiency Improves with Practice” at RAW 2023
  • Current and former lab members at the VSS conference
  • Publications – 2023

University Links

  • Centre for Vision Research
  • Department of Electrical Engineering and Computer Science
  • Lassonde School of Engineering
  • York University
  • Centre for Innovation in Computing at Lassonde
  • Tsotsos Lab on Social Media

    Copyright © 2015 Tsotsos Lab

    Theme created by PWT. Powered by WordPress.org