Tsotsos Lab
Menu
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact

Navigation


Person-following Robot

Person following behavior is an important task for social robots. To enable robots to follow a person, we have to track the target in real-time without critical failures. There are many situations where the robot will potentially loose tracking in a dynamic environment, e.g., occlusion, illumination, pose changes, etc. To solve these critical problems, we built two person-following algorithms on different hardware platforms: (1) SOAB runs on a system without a dedicated GPU, (2) CNN_RGBSD requires a dedicated GPU. We also built a human tracking dataset with stereo images (left, right, and depth images).

Publications

Bao Xin Chen*, Raghavender Sahdev*, and John K. Tsotsos “Person Following Robot Using Selected Online Ada-Boosting with Stereo Camera” in Computer and Robot Vision (CRV), 2017 14th Conference on, IEEE, 2017, pp. 48-55.
Project page link: http://jtl.lassonde.yorku.ca/2017/02/person-following/

Bao Xin Chen*, Raghavender Sahdev*, and John K. Tsotsos “Integrating Stereo Vision with a CNN Tracker for a Person-Following Robot” in 11th International Conference on Computer Vision Systems (ICVS), Springer, 2017, pp. 300-313.
Project page link: http://jtl.lassonde.yorku.ca/2017/05/person-following-cnn/

* denote as equal contribution


Back to homepage

Recent News


  • Congrats to Iuliia Kotseruba on wining the Best Student Paper Award at IV 2024!
  • Lab members at NCRN24
  • Markus Solbach presents “Visuospatial Hypothesize-and-Test Strategies Yield High Accuracy without Training; Their Efficiency Improves with Practice” at RAW 2023
  • Current and former lab members at the VSS conference
  • Publications – 2023

University Links

  • Centre for Vision Research
  • Department of Electrical Engineering and Computer Science
  • Lassonde School of Engineering
  • York University
  • Centre for Innovation in Computing at Lassonde
  • Tsotsos Lab on Social Media

    Copyright © 2015 Tsotsos Lab

    Theme created by PWT. Powered by WordPress.org