Tsotsos Lab
Menu
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Transformers
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact
  • News
  • People
    • Current Members
    • Lab Alumni
  • Active Research Topics
    • Active Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Complexity
      • Spatial Cognition
      • Visual Search
    • Cognitive Architectures
      • Attention Control
      • Autonomous Vehicles
      • Cognitive Programs
      • Complexity
      • Development
      • Eye Movements
      • Learning by Composition and Exploration
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Computational Neuroscience
      • Attention Control
      • Colour
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Vision Architecture
    • Computer Vision
      • Active Recognition
      • Autonomous Vehicles
      • Binocular Heads
      • Biomedical Applications
      • Colour
      • Complexity
      • Motion
      • Navigation
      • Saliency
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Transformers
      • Vision Architecture
      • Visual Search
    • Human Vision and Visual Behaviour
      • Attention Control
      • Colour
      • Complexity
      • Development
      • Eye Movements
      • Motion
      • Selective Tuning
      • Shape
      • Spatial Cognition
      • Vision Architecture
      • Visual Working Memory
    • Visual Attention
      • Attention Control
      • Autonomous Vehicles
      • Complexity
      • Development
      • Eye Movements
      • Saliency
      • Selective Tuning
      • Spatial Cognition
      • Vision Architecture
    • Visually Guided Robotics
      • Active Recognition
      • Autonomous Vehicles
      • Navigation
      • Visual Search
  • Publications
    • Publications
    • Software
    • Datasets
  • Open Positions
  • Contact

Scene Classification in Indoor Environments for Robots using Word Embeddings


By tech | April 1, 2018 | Category Uncategorized

Abstract

Scene Classification has been addressed with numerous techniques in the computer vision literature. However with the increasing size of datasets in the field, it has become difficult to achieve high accuracy in the context of robotics. We overcome this problem and obtain good results through our approach. In our approach, we propose to address indoor Scene Classification task using a CNN model trained with a reduced pre-processed version of the Places365 dataset and an empirical analysis is done on a real world dataset that we built by capturing image sequences using a GoPro camera. We also report results obtained on a subset of the Places365 dataset using our approach and additionally show a deployment of our approach on a robot operating in a real world environment.

Dataset

  • The dataset is available for download here.
  • The taxonomy is available for download here.

Videos

Sample Dataset Images







 

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Recent News


  • Lab members at the VSS conference
  • Congrats to Iuliia Kotseruba on wining the Best Student Paper Award at IV 2024!
  • Lab members at NCRN24
  • Markus Solbach presents “Visuospatial Hypothesize-and-Test Strategies Yield High Accuracy without Training; Their Efficiency Improves with Practice” at RAW 2023
  • Current and former lab members at the VSS conference

University Links

  • Centre for Vision Research
  • Department of Electrical Engineering and Computer Science
  • Lassonde School of Engineering
  • York University
  • Centre for Innovation in Computing at Lassonde
  • Tsotsos Lab on Social Media

    Copyright © 2015 Tsotsos Lab

    Theme created by PWT. Powered by WordPress.org